mirror of
https://github.com/microsoft/FLAML.git
synced 2026-02-09 02:09:16 +08:00
Fix log_training_metric causing IndexError for time series models (#1469)
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
This commit is contained in:
@@ -616,7 +616,12 @@ def _eval_estimator(
|
||||
logger.warning(f"ValueError {e} happened in `metric_loss_score`, set `val_loss` to `np.inf`")
|
||||
metric_for_logging = {"pred_time": pred_time}
|
||||
if log_training_metric:
|
||||
train_pred_y = get_y_pred(estimator, X_train, eval_metric, task)
|
||||
# For time series forecasting, X_train may be a sampled dataset whose
|
||||
# test partition can be empty. Use the training partition from X_val
|
||||
# (which is the dataset used to define y_train above) to keep shapes
|
||||
# aligned and avoid empty prediction inputs.
|
||||
X_train_for_metric = X_val.X_train if isinstance(X_val, TimeSeriesDataset) else X_train
|
||||
train_pred_y = get_y_pred(estimator, X_train_for_metric, eval_metric, task)
|
||||
metric_for_logging["train_loss"] = metric_loss_score(
|
||||
eval_metric,
|
||||
train_pred_y,
|
||||
|
||||
@@ -264,7 +264,8 @@ class TCNEstimator(TimeSeriesEstimator):
|
||||
def predict(self, X):
|
||||
X = self.enrich(X)
|
||||
if isinstance(X, TimeSeriesDataset):
|
||||
df = X.X_val
|
||||
# Use X_train if X_val is empty (e.g., when computing training metrics)
|
||||
df = X.X_val if len(X.test_data) > 0 else X.X_train
|
||||
else:
|
||||
df = X
|
||||
dataset = DataframeDataset(
|
||||
|
||||
@@ -197,7 +197,11 @@ class TemporalFusionTransformerEstimator(TimeSeriesEstimator):
|
||||
last_data_cols = self.group_ids.copy()
|
||||
last_data_cols.append(self.target_names[0])
|
||||
last_data = self.data[lambda x: x.time_idx == x.time_idx.max()][last_data_cols]
|
||||
decoder_data = X.X_val if isinstance(X, TimeSeriesDataset) else X
|
||||
# Use X_train if test_data is empty (e.g., when computing training metrics)
|
||||
if isinstance(X, TimeSeriesDataset):
|
||||
decoder_data = X.X_val if len(X.test_data) > 0 else X.X_train
|
||||
else:
|
||||
decoder_data = X
|
||||
if "time_idx" not in decoder_data:
|
||||
decoder_data = add_time_idx_col(decoder_data)
|
||||
decoder_data["time_idx"] += encoder_data["time_idx"].max() + 1 - decoder_data["time_idx"].min()
|
||||
|
||||
@@ -194,7 +194,13 @@ class Orbit(TimeSeriesEstimator):
|
||||
|
||||
elif isinstance(X, TimeSeriesDataset):
|
||||
data = X
|
||||
X = data.test_data[[self.time_col] + X.regressors]
|
||||
# By default we predict on the dataset's test partition.
|
||||
# Some internal call paths (e.g., training-metric logging) may pass a
|
||||
# dataset whose test partition is empty; fall back to train partition.
|
||||
if data.test_data is not None and len(data.test_data):
|
||||
X = data.test_data[data.regressors + [data.time_col]]
|
||||
else:
|
||||
X = data.train_data[data.regressors + [data.time_col]]
|
||||
|
||||
if self._model is not None:
|
||||
forecast = self._model.predict(X, **kwargs)
|
||||
@@ -301,7 +307,13 @@ class Prophet(TimeSeriesEstimator):
|
||||
|
||||
if isinstance(X, TimeSeriesDataset):
|
||||
data = X
|
||||
# By default we predict on the dataset's test partition.
|
||||
# Some internal call paths (e.g., training-metric logging) may pass a
|
||||
# dataset whose test partition is empty; fall back to train partition.
|
||||
if data.test_data is not None and len(data.test_data):
|
||||
X = data.test_data[data.regressors + [data.time_col]]
|
||||
else:
|
||||
X = data.train_data[data.regressors + [data.time_col]]
|
||||
|
||||
X = X.rename(columns={self.time_col: "ds"})
|
||||
if self._model is not None:
|
||||
@@ -327,11 +339,19 @@ class StatsModelsEstimator(TimeSeriesEstimator):
|
||||
|
||||
if isinstance(X, TimeSeriesDataset):
|
||||
data = X
|
||||
# By default we predict on the dataset's test partition.
|
||||
# Some internal call paths (e.g., training-metric logging) may pass a
|
||||
# dataset whose test partition is empty; fall back to train partition.
|
||||
if data.test_data is not None and len(data.test_data):
|
||||
X = data.test_data[data.regressors + [data.time_col]]
|
||||
else:
|
||||
X = data.train_data[data.regressors + [data.time_col]]
|
||||
else:
|
||||
X = X[self.regressors + [self.time_col]]
|
||||
|
||||
if isinstance(X, DataFrame):
|
||||
if X.shape[0] == 0:
|
||||
return pd.Series([], name=self.target_names[0], dtype=float)
|
||||
start = X[self.time_col].iloc[0]
|
||||
end = X[self.time_col].iloc[-1]
|
||||
if len(self.regressors):
|
||||
@@ -829,6 +849,13 @@ class TS_SKLearn(TimeSeriesEstimator):
|
||||
if isinstance(X, TimeSeriesDataset):
|
||||
data = X
|
||||
X = data.test_data
|
||||
# By default we predict on the dataset's test partition.
|
||||
# Some internal call paths (e.g., training-metric logging) may pass a
|
||||
# dataset whose test partition is empty; fall back to train partition.
|
||||
if data.test_data is not None and len(data.test_data):
|
||||
X = data.test_data
|
||||
else:
|
||||
X = data.train_data
|
||||
|
||||
if self._model is not None:
|
||||
X = X[self.regressors]
|
||||
|
||||
@@ -681,11 +681,55 @@ def test_cv_step():
|
||||
print("yahoo!")
|
||||
|
||||
|
||||
def test_log_training_metric_ts_models():
|
||||
"""Test that log_training_metric=True works with time series models (arima, sarimax, holt-winters)."""
|
||||
import statsmodels.api as sm
|
||||
|
||||
from flaml.automl.task.time_series_task import TimeSeriesTask
|
||||
|
||||
estimators_all = TimeSeriesTask("forecast").estimators.keys()
|
||||
estimators_to_test = ["xgboost", "arima", "lassolars", "tcn", "snaive", "prophet", "orbit"]
|
||||
estimators = [
|
||||
est for est in estimators_to_test if est in estimators_all
|
||||
] # not all estimators available in current python env
|
||||
print(f"Testing estimators: {estimators}")
|
||||
|
||||
# Prepare data
|
||||
data = sm.datasets.co2.load_pandas().data["co2"]
|
||||
data = data.resample("MS").mean()
|
||||
data = data.bfill().ffill()
|
||||
data = data.to_frame().reset_index()
|
||||
data = data.rename(columns={"index": "ds", "co2": "y"})
|
||||
num_samples = data.shape[0]
|
||||
time_horizon = 12
|
||||
split_idx = num_samples - time_horizon
|
||||
df = data[:split_idx]
|
||||
|
||||
# Test each time series model with log_training_metric=True
|
||||
for estimator in estimators:
|
||||
print(f"\nTesting {estimator} with log_training_metric=True")
|
||||
automl = AutoML()
|
||||
settings = {
|
||||
"time_budget": 3,
|
||||
"metric": "mape",
|
||||
"task": "forecast",
|
||||
"eval_method": "holdout",
|
||||
"label": "y",
|
||||
"log_training_metric": True, # This should not cause errors
|
||||
"estimator_list": [estimator],
|
||||
}
|
||||
automl.fit(dataframe=df, **settings, period=time_horizon, force_cancel=True)
|
||||
print(f" ✅ {estimator} SUCCESS with log_training_metric=True")
|
||||
if automl.best_estimator:
|
||||
assert automl.best_estimator == estimator
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test_forecast_automl(60)
|
||||
# test_multivariate_forecast_num(5)
|
||||
# test_multivariate_forecast_cat(5)
|
||||
test_numpy()
|
||||
# test_numpy()
|
||||
# test_forecast_classification(5)
|
||||
# test_forecast_panel(5)
|
||||
# test_cv_step()
|
||||
test_log_training_metric_ts_models()
|
||||
|
||||
Reference in New Issue
Block a user