mirror of
https://github.com/microsoft/FLAML.git
synced 2026-02-09 02:09:16 +08:00
Add example of how to get best config and convert it to parameters (#1323)
This commit is contained in:
@@ -70,3 +70,21 @@ Optimization history can be checked from the [log](Use-Cases/Task-Oriented-AutoM
|
|||||||
- modify the [search space](Use-Cases/Task-Oriented-AutoML#a-shortcut-to-override-the-search-space) for the estimators causing this error.
|
- modify the [search space](Use-Cases/Task-Oriented-AutoML#a-shortcut-to-override-the-search-space) for the estimators causing this error.
|
||||||
- or remove this estimator from the `estimator_list`.
|
- or remove this estimator from the `estimator_list`.
|
||||||
- If the OOM error happens when ensembling, consider disabling ensemble, or use a cheaper ensemble option. ([Example](Use-Cases/Task-Oriented-AutoML#ensemble)).
|
- If the OOM error happens when ensembling, consider disabling ensemble, or use a cheaper ensemble option. ([Example](Use-Cases/Task-Oriented-AutoML#ensemble)).
|
||||||
|
|
||||||
|
### How to get the best config of an estimator and use it to train the original model outside FLAML?
|
||||||
|
|
||||||
|
When you finished training an AutoML estimator, you may want to use it in other code w/o depending on FLAML. You can get the `automl.best_config` and convert it to the parameters of the original model with below code:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from flaml import AutoML
|
||||||
|
from sklearn.datasets import load_iris
|
||||||
|
|
||||||
|
X, y = load_iris(return_X_y=True)
|
||||||
|
|
||||||
|
automl = AutoML(settings={"time_budget": 3})
|
||||||
|
automl.fit(X, y)
|
||||||
|
|
||||||
|
print(f"{automl.best_estimator=}")
|
||||||
|
print(f"{automl.best_config=}")
|
||||||
|
print(f"params for best estimator: {automl.model.config2params(automl.best_config)}")
|
||||||
|
```
|
||||||
|
|||||||
Reference in New Issue
Block a user