From 1ec77b58b4ccbf88fb06688dfd1e0cec793da0bf Mon Sep 17 00:00:00 2001 From: Chi Wang Date: Sun, 5 Mar 2023 08:40:57 -0800 Subject: [PATCH] improve max_valid_n and doc (#933) * improve max_valid_n and doc * Update README.md Co-authored-by: Li Jiang * newline at end of file * doc --------- Co-authored-by: Li Jiang Co-authored-by: Susan Xueqing Liu Co-authored-by: Qingyun Wu --- README.md | 10 +- flaml/automl/ml.py | 4 +- flaml/integrations/oai/completion.py | 38 +- notebook/automl_nlp.ipynb | 2957 +++++++++++++------------- notebook/integrate_openai.ipynb | 492 ++--- setup.py | 9 +- website/docs/Examples/AutoML-NLP.md | 4 +- website/docs/Getting-Started.md | 6 +- website/docs/Installation.md | 12 +- 9 files changed, 1780 insertions(+), 1752 deletions(-) diff --git a/README.md b/README.md index 71362b023..80d7ef13c 100644 --- a/README.md +++ b/README.md @@ -14,20 +14,22 @@

-:fire: An [upcoming tutorial on FLAML](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) at [AAAI-23](https://aaai.org/Conferences/AAAI-23/aaai23tutorials/) (to be held on Feb 08, 2023) +:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT support is coming. + +:fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023. :fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022 ## What is FLAML FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting -learners and hyperparameters for each learner. It can also be used to tune generic hyperparameters for MLOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on. +models and hyperparameters for each model. It can also be used to tune generic hyperparameters for large language models (LLM), MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on. -1. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classifcal machine learning models and deep neural networks. +1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including large language models such as the OpenAI GPT-3 models. 1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code). 1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm) -and learner selection method invented by Microsoft Research. +and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research). FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience. diff --git a/flaml/automl/ml.py b/flaml/automl/ml.py index 1bed9992a..55fcd932e 100644 --- a/flaml/automl/ml.py +++ b/flaml/automl/ml.py @@ -207,11 +207,11 @@ def metric_loss_score( except ImportError: raise ValueError( metric_name - + " is not an built-in sklearn metric and nlp is not installed. " + + " is not an built-in sklearn metric and [hf] is not installed. " "Currently built-in sklearn metrics are: " "r2, rmse, mae, mse, accuracy, roc_auc, roc_auc_ovr, roc_auc_ovo," "log_loss, mape, f1, micro_f1, macro_f1, ap. " - "If the metric is an nlp metric, please pip install flaml[nlp] ", + "If the metric is a huggingface metric, please pip install flaml[hf] ", "or pass a customized metric function to AutoML.fit(metric=func)", ) # If the metric is not found from huggingface dataset metric list (i.e., FileNotFoundError) diff --git a/flaml/integrations/oai/completion.py b/flaml/integrations/oai/completion.py index 0d79e755b..001311e22 100644 --- a/flaml/integrations/oai/completion.py +++ b/flaml/integrations/oai/completion.py @@ -179,6 +179,7 @@ class Completion: """ cost = 0 data = cls.data + data_length = len(data) target_n_tokens = ( 1000 * cls.inference_budget / cls.price1K[config["model"]] if cls.inference_budget and cls.price1K.get(config["model"]) @@ -187,26 +188,33 @@ class Completion: prune_hp = cls._prune_hp metric = cls._metric config_n = config[prune_hp] - max_tokens = config["max_tokens"] + max_tokens = config.get("max_tokens", 16) # default value in OpenAI is 16 region_key = cls._get_region_key(config) prompt = cls._prompts[config["prompt"]] stop = cls._stops and cls._stops[config["stop"]] if prune and target_n_tokens: max_valid_n = cls._get_max_valid_n(region_key, max_tokens) - min_invalid_n = cls._get_min_invalid_n(region_key, max_tokens) - if min_invalid_n is not None and config_n >= min_invalid_n: - if config_n > max_valid_n: + if cls.avg_input_tokens: + # max_tokens bounds the maximum tokens + # so using it we can calculate a valid n according to the avg # input tokens + max_valid_n = max( + max_valid_n, + int((target_n_tokens - cls.avg_input_tokens) // max_tokens), + ) + else: + input_tokens = [None] * data_length + if config_n <= max_valid_n: + start_n = config_n + else: + min_invalid_n = cls._get_min_invalid_n(region_key, max_tokens) + if min_invalid_n is not None and config_n >= min_invalid_n: # prune this config return { "inference_cost": np.inf, metric: np.inf if cls._mode == "min" else -np.inf, "cost": cost, } - # since config_n<=max_valid_n, there is a chance config_n is valid - start_n = config_n - else: - # start from a valid n - start_n = min(max_valid_n, config_n) + start_n = max_valid_n + 1 else: start_n = config_n params = config.copy() @@ -214,7 +222,6 @@ class Completion: temperature_or_top_p = params.pop("temperature_or_top_p", None) if temperature_or_top_p: params.update(temperature_or_top_p) - data_length = len(data) num_completions, previous_num_completions = start_n, 0 n_tokens_list, result, responses_list = [], {}, [] while True: # n <= config_n @@ -242,6 +249,14 @@ class Completion: if previous_num_completions else response["usage"]["total_tokens"] ) + if ( + prune + and target_n_tokens + and not cls.avg_input_tokens + and not input_tokens[i] + ): + # store the # input tokens + input_tokens[i] = response["usage"]["prompt_tokens"] # Under Assumption 1, we should count both the input and output tokens in the first query, # and only count ouput tokens afterwards query_cost = ( @@ -335,6 +350,8 @@ class Completion: result["inference_cost"] = ( avg_n_tokens * cls.price1K[config["model"]] / 1000 ) + if prune and target_n_tokens and not cls.avg_input_tokens: + cls.avg_input_tokens = np.mean(input_tokens) break else: if data_early_stop: @@ -424,6 +441,7 @@ class Completion: cls._total_cost = 0 # total optimization cost cls._eval_func = eval_func cls.data = data + cls.avg_input_tokens = None search_alg = BlendSearch( cost_attr="cost", diff --git a/notebook/automl_nlp.ipynb b/notebook/automl_nlp.ipynb index b6c83cb19..9b5c566c6 100644 --- a/notebook/automl_nlp.ipynb +++ b/notebook/automl_nlp.ipynb @@ -3,14 +3,15 @@ { "cell_type": "markdown", "metadata": { - "id": "view-in-github", - "colab_type": "text" + "colab_type": "text", + "id": "view-in-github" }, "source": [ "\"Open" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "id": "43f7-wG-Tjg_" @@ -28,7 +29,7 @@ "- be embedded in self-tuning software that requires low latency & resource in repetitive\n", " tuning tasks.\n", "\n", - "In this notebook, we demonstrate how to use the FLAML library to fine tune an NLP language model with hyperparameter search. We will use [flaml.tune](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function) with the built in GPU in colab for the tuning. However, if you have a machine with more than 1 GPU, you can also use FLAML's [parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) with the ray tune option. \n", + "In this notebook, we demonstrate how to use the FLAML library to fine tune an huggingface language model with hyperparameter search. We will use [flaml.automl](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML) with the built in GPU in colab for the tuning. However, if you have a machine with more than 1 GPU, you can also use FLAML's [parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) with the ray tune option. \n", "\n", "FLAML requires `Python>=3.7`. To run this notebook example, please install flaml with the `nlp,notebook` and `blendsearch` option:\n", "```bash\n", @@ -48,8 +49,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Requirement already satisfied: flaml[blendsearch,nlp,notebook] in /usr/local/lib/python3.7/dist-packages (1.0.11)\n", @@ -84,8 +85,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "[]\n" ] @@ -176,146 +177,146 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Downloading and preparing dataset glue/sst2 (download: 7.09 MiB, generated: 4.81 MiB, post-processed: Unknown size, total: 11.90 MiB) to /root/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad...\n" ] }, { - "output_type": "display_data", "data": { + "application/json": { + "ascii": false, + "bar_format": null, + "colour": null, + "elapsed": 0.023516416549682617, + "initial": 0, + "n": 0, + "ncols": null, + "nrows": null, + "postfix": null, + "prefix": "Downloading data", + "rate": null, + "total": 7439277, + "unit": "B", + "unit_divisor": 1000, + "unit_scale": true + }, + "application/vnd.jupyter.widget-view+json": { + "model_id": "16fba9eb9e4542bc9d34eca00d71cc14", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Downloading data: 0%| | 0.00/7.44M [00:00" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5hdVX3/8feHEMiAhACJNCSExAIpQSzBCGJVEC+J+QlERAvWimhB28pPRUNJQUyx1EuqffSR4g8sRVCuKYSokUgRsYUgCQQSEgwGjJAJQhAiF0dy+/7+2OuEncOeM3smc24zn9fznGf2XvtyvmfPzPnuvdbaaysiMDMzq7ZTswMwM7PW5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwqwPJL1F0qpmx2FWT04Q1nYkrZH0jmbGEBH/ExET67V/SVMl/VzS85LWS7pD0gn1ej+zIk4QZgUkDWnie58M3ABcCYwF9gUuAI7vw74kyf/n1if+w7EBQ9JOks6V9Iik30m6XtLeueU3SPqtpN+ns/NDc8uukHSJpAWSXgTelq5UPidpWdrmOknD0vrHSlqb277bddPycyQ9IWmdpL+RFJIOLPgMAr4OfDEivhMRv4+IrRFxR0SckdaZLel7uW3Gp/3tnOZ/JukiSXcCfwBmSlpS9T6fkTQ/Te8q6V8lPSbpSUnfltSxg78OGwCcIGwgOQuYARwD7Ac8C1ycW/5j4CDg1cB9wPertv8gcBGwB/C/qewDwDRgAvA64CM13r9wXUnTgLOBdwAHAsfW2MdEYH9gbo11yvhr4Eyyz/JtYKKkg3LLPwhcnaa/DBwMHJ7iG0N2xWKDnBOEDSSfAM6LiLUR8RIwGzi5cmYdEZdHxPO5ZX8uac/c9jdHxJ3pjP2PqeybEbEuIp4BfkD2Jdqd7tb9APCfEbEiIv6Q3rs7+6SfT5T90N24Ir3f5oj4PXAzcCpAShR/BsxPVyxnAp+JiGci4nngX4BTdvD9bQBwgrCB5ADgJkkbJG0AHgK2APtKGiLpy6n66TlgTdpmZG77xwv2+dvc9B+AV9V4/+7W3a9q30XvU/G79HN0jXXKqH6Pq0kJguzqYV5KVqOA3YB7c8ftllRug5wThA0kjwPvjogRudewiOgk+1I8kayaZ09gfNpGue3rNbTxE2SNzRX711h3FdnneF+NdV4k+1Kv+JOCdao/y63AKEmHkyWKSvXS00AXcGjumO0ZEbUSoQ0SThDWroZKGpZ77UxW136RpAMAJI2SdGJafw/gJbIz9N3IqlEa5XrgdEmHSNoN+Hx3K0Y2/v7ZwOclnS5peGp8f7OkS9Nq9wNvlTQuVZHN6imAiNhE1jNqDrA3WcIgIrYClwH/JunVAJLGSJra509rA4YThLWrBWRnvpXXbOAbwHzgJ5KeB+4GjkrrXwn8BugEVqZlDRERPwa+CdwOrM6990vdrD8X+Evgo8A64Engn8naEYiIW4HrgGXAvcAPS4ZyNdkV1A0RsTlX/g+VuFL123+TNZbbICc/MMissSQdAjwI7Fr1RW3WUnwFYdYAkt6b7jfYC/gK8AMnB2t1ThBmjfFx4CngEbKeVX/b3HDMeuYqJjMzK+QrCDMzK7RzswPoLyNHjozx48c3Owwzs7Zy7733Ph0RhTdGDpgEMX78eJYsWdLzimZmto2k33S3zFVMZmZWyAnCzMwKOUGYmVkhJwgzMyvkBGFmZoUGTC8mM7PBZt7STuYsXMW6DV3sN6KDmVMnMmPymH7bvxOEmVkbmre0k1k3Lqdr0xYAOjd0MevG5QD9liRcxWRm1obmLFy1LTlUdG3awpyFq/rtPZwgzMza0LoNXb0q7wsnCDOzNrTfiI5elfeFE4SZWRuaOXUiHUOHbFfWMXQIM6f238MA3UhtZtaGKg3R58xdxsYtWxnjXkxmZlYxY/IYrrnnMQCu+/jR/b5/VzGZmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQnVNEJKmSVolabWkcwuWHyDpNknLJP1M0tjcstMk/Sq9TqtnnGZm9kp1SxCShgAXA+8GJgGnSppUtdq/AldGxOuAC4EvpW33Br4AHAUcCXxB0l71itXMzF6pnlcQRwKrI+LRiNgIXAucWLXOJOCnafr23PKpwK0R8UxEPAvcCkyrY6xmZlalngliDPB4bn5tKst7ADgpTb8X2EPSPiW3RdKZkpZIWrJ+/fp+C9zMzJrfSP054BhJS4FjgE5gS9mNI+LSiJgSEVNGjRpVrxjNzAalej6TuhPYPzc/NpVtExHrSFcQkl4FvC8iNkjqBI6t2vZndYzVzMyq1PMKYjFwkKQJknYBTgHm51eQNFJSJYZZwOVpeiHwLkl7pcbpd6UyMzNrkLoliIjYDHyS7Iv9IeD6iFgh6UJJJ6TVjgVWSXoY2Be4KG37DPBFsiSzGLgwlZmZWYPUs4qJiFgALKgquyA3PReY2822l/PyFYWZmTVYsxupzcysRTlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0I9JghJ+zQiEDMzay1lriDulnSDpOmSVPeIzMysJZRJEAcDlwJ/DfxK0r9IOri+YZmZWbP1mCAic2tEnAqcAZwG3CPpDklH1z1CMzNrip17WiG1QXyI7AriSeAsYD5wOHADMKGeAZqZWXP0mCCARcBVwIyIWJsrXyLp2/UJy8zMmq1MgpgYEVG0ICK+0s/xmJlZiyjTSP0TSSMqM5L2krSwjjGZmVkLKJMgRkXEhspMRDwLvLp+IZmZWSsokyC2SBpXmZF0AFBY5WRmZgNHmQRxHvC/kq6S9D3g58CsMjuXNE3SKkmrJZ1bsHycpNslLZW0TNL0VD5U0nclLZf0kKRS72dmZv2nx0bqiLhF0hHAG1PRpyPi6Z62kzQEuBh4J7AWWCxpfkSszK12PnB9RFwiaRKwABgPvB/YNSIOk7QbsFLSNRGxphefzczMdkDZwfq2AE8BzwGTJL21xDZHAqsj4tGI2AhcC5xYtU4Aw9P0nsC6XPnuknYGOoCN6b3NzKxBytwo9zfAp4CxwP1kVxKLgON62HQM8Hhufi1wVNU6s8l6SZ0F7A68I5XPJUsmTwC7AZ+JiGcKYjsTOBNg3Lhx1YvNzGwHlLmC+BTwBuA3EfE2YDKwofYmpZ0KXBERY4HpwFWSdiK7+tgC7Ed2p/ZnJb2meuOIuDQipkTElFGjRvVTSGZmBuUSxB8j4o8AknaNiF8CE0ts1wnsn5sfm8ryPgZcDxARi4BhwEjgg8AtEbEpIp4C7gSmlHhPMzPrJ2USxNp0o9w84FZJNwO/KbHdYuAgSRMk7QKcQjaGU95jwNsBJB1CliDWp/LjUvnuZNVavyzxnmZm1k/K9GJ6b5qcLel2ssbkW0pst1nSJ4GFwBDg8ohYIelCYElEzAc+C1wm6TNkDdMfiYiQdDHwn5JWAAL+MyKW9eUDmplZ39RMEKmr6oqI+DOAiLijNzuPiAVkXVfzZRfkplcCf1Gw3QtkXV3NzKxJalYxRcQWYFX+TmozMxscyozmuhewQtI9wIuVwog4oW5RmZlZ05VJEJ+vexRmZtZyyjRS96rdwczMBoYyd1I/z8ujt+4CDAVejIjh3W9lZmbtrswVxB6VaUkiGwLjjd1vYWZmA0HZwfoAiMw8YGqd4jEzsxZRporppNzsTmRDXvyxbhGZmVlLKNOL6fjc9GZgDa8cttvMzAaYMm0QpzciEDMzay09tkGkR3+OyM3vJeny+oZlZmbNVqaR+nURse35DxHxLNkzIczMbAArkyB2krRXZUbS3pRruzAzszZW5ov+a8AiSTek+fcDF9UvJDMzawVlGqmvlLSEl59BfVIaptvMzAawMvdBvJHsmRDfSvPDJR0VEb+oe3RmbWje0k7mLFzFug1d7Deig5lTJzJj8phmh2XWa2XaIC4BXsjNv5DKzKzKvKWdzLpxOZ0bugigc0MXs25czryl1Y9jN2t9ZdogFBGVwfqIiK2S3EhtVmDOwlV0bdqyXVnXpi2cM3cZ19zzWJOisoFs5RPPMWl0fcZOLXMF8aik/ytpaHp9Cni0LtGYtbl1G7oKyzdu2drgSGywmDR6OCceXp8qzDJXAp8AvgmcTzbs923AGXWJxqzN7Teig86CJDFmRAfXffzoJkRk1nc9XkFExFMRcUpEvDoi9gU+Bhxb98jM2tDMqRPpGDpku7KOoUOYOXVikyIy67tSw31LGiJpuqSrgF8Df1nfsMza04zJY/jSSYexy5DsX2vMiA6+dNJh7sVkbalmFZOkY4APAtOBe4C/AF4TEX9oQGxmbWnG5DHbGqRdrWTtrNsEIWkt8BhZl9bPRcTzkn7t5GBmNjjUqmKaC+xHVp10vKTdefnZ1GZmNsB1myAi4tPABLKxmI4FVgGjJH1A0qsaE56ZmTVLzUbq9Azq2yPiTLJkcSrZ0+TWNCA2MzNrotJ3REfEJuCHwA8lddQvJDMzawWlurlWi4ji20XNzGzA6FOCMDOzgc+D7pkNYB563HZEmedBHAzMBA7Irx8Rx3W7kZk1XWXo8crospWhxwEnCSulTBXTDcB9ZIP1zcy9eiRpmqRVklZLOrdg+ThJt0taKmmZpOm5Za+TtEjSCknLJQ0r95HMDLofenzOwlVNisjaTZkqps0R0esHBEkaAlwMvBNYCyyWNL/qcaXnA9dHxCWSJgELgPHpeRPfA/46Ih6QtA+wqbcxmA1m3Q093l25WbUyVxA/kPR3kkZL2rvyKrHdkcDqiHg0IjYC15LdQ5EXQOVJF3sC69L0u4BlEfEAQET8LiK2YGal7TeiuDd6d+Vm1cokiNPIqpTuAu5NryUlthsDPJ6bX5vK8mYDH0rjPi0AzkrlBwMhaaGk+ySdU/QGks6UtETSkvXr15cIyWzw8NDjtqN6rGKKiAl1fP9TgSsi4muSjgaukvTaFNebgTcAfwBuk3RvRNxWFdulwKUAU6ZM8ThRZjmVhmj3YrK+KtOLaSjwt8BbU9HPgP+X7qyupRPYPzc/NpXlfQyYBhARi1JD9Eiyq42fR8TTKYYFwBFkT7Mzs5JmTB7jhGB9VqaK6RLg9cC/p9frU1lPFgMHSZogaRfgFGB+1TqPAW8HkHQIMAxYDywEDpO0W2qwPgZYiZmZNUyZXkxviIg/z83/VNIDPW0UEZslfZLsy34IcHlErJB0IbAkIuYDnwUuk/QZsgbrj0REAM9K+jpZkglgQUT8qHcfzczMdkSZBLFF0p9GxCMAkl4DlOpRFBELyBqf82UX5KZXkj2lrmjb75F1dTUzsyYokyBmArdLehQQ2R3Vp9c1KjMza7oyvZhuk3QQUOkbtyoiXqpvWGZm1my1nkl9XET8VNJJVYsOlERE3Fjn2MzMrIlqXUEcA/wUOL5gWQBOEGZmA1i3CSIivpAmL4yIX+eXSarnzXNmZtYCytwH8V8FZXP7OxAzM2sttdog/gw4FNizqh1iONkNbWZmNoDVaoOYCLwHGMH27RDPA2fUMygzM2u+Wm0QNwM3Szo6IhY1MCYzM2sBZW6UWyrp78mqm7ZVLUXER+sWlZmZNV2ZRuqrgD8BpgJ3kI3K+nw9gzIzs+YrkyAOjIjPAy9GxHeB/wMcVd+wzMys2cokiMpzHzakh/nsCby6fiGZmVkrKNMGcamkvYDPkz3P4VXABbU3MTOzdldmsL7vpMk7gNfUNxwzM2sVtW6UO7vWhhHx9f4Px6rNW9rpZwpb2/Hf7cBQ6wpij/RzIvAGXn5c6PHAPfUMyjLzlnYy68bldG3Kns/UuaGLWTcuB/A/m7Us/90OHLVulPsnAEk/B46IiOfT/GzAj/9sgDkLV237J6vo2rSFc+Yu45p7HmtSVFbGyieeY9Lo4c0Ooym6+7uds3CVE0SbKdOLaV9gY25+YyqzOlu3oauwfOOWrQ2OxHpr0ujhnHj44Pwy7O7vtrtya11lejFdCdwj6aY0PwO4om4R2Tb7jeigs+CfasyIDq77+NFNiMisZ9393e43oqMJ0diO6PEKIiIuInsG9bPpdXpEfKnegRnMnDqRjqFDtivrGDqEmVMndrOFWfP573bgqNWLaXhEPCdpb2BNelWW7R0Rz9Q/vMGtUl97ztxlbNyylTHuDWJtoPL36V5M7a9WFdPVZMN930v2iNEKpXnfE9EAMyaP2dYgPdirldx1sn3MmDzGv5sBoFYvpvekn368qDWdu06aNV6tKqYjam0YEff1fzhWT+18Bu6uk2aNV6uK6Ws1lgVwXD/HYnXU7mfg7jpp1ni1qpje1shArL7a/QzcXSfNGq/MjXJIeq2kD0j6cOVV78Csf7X7Gbi7Tpo1Xo83ykn6AnAsMAlYALwb+F+yG+isTbT7Gbi7Tpo1Xpk7qU8G/hxYGhGnS9oX+F59w7L+NnPqxO3aIKD9zsDdddKsscokiK6I2Cpps6ThwFPA/nWOy/qZz8DNrLfKJIglkkYAl5HdNPcCsKiuUVld+AzczHqj1n0QFwNXR8TfpaJvS7oFGB4RyxoSnZk1VTvfO2M7rlYvpoeBf5W0RtJXJU2OiDW9SQ6SpklaJWm1pHMLlo+TdLukpZKWSZpesPwFSZ8r/5HMrD9U7p3p3NBF8PK9M/OWdjY7NGuQbhNERHwjIo4GjgF+B1wu6ZeSviDp4J52LGkIcDFZr6dJwKmSJlWtdj5wfURMBk4B/r1q+deBH5f+NGbWb2rdO2ODQ5nhvn8TEV9JX+Knkj0P4qES+z4SWB0Rj0bERuBa4MTq3QOVx27tCayrLJA0A/g1sKLEe5lZP2v3e2dsx/WYICTtLOl4Sd8nO5tfBZxUYt9jgMdz82tTWd5s4EOS1pLdY3FWes9XAf8A/FMPsZ0paYmkJevXry8RkpmV1d09Mu1y74ztuG4ThKR3Srqc7Iv9DLLnUP9pRJwSETf30/ufClwREWOB6cBVknYiSxz/FhEv1No4Ii6NiCkRMWXUqFH9FJKZge9et9rdXGeRPRPisxHxbB/23cn290uMTWV5HwOmAUTEIknDgJHAUcDJkr4KjAC2SvpjRHyrD3GYWR/43hmrNVjfjo7Wuhg4SNIEssRwCvDBqnUeA94OXCHpEGAYsD4i3lJZQdJs4AUnh/bgbpEDi++dGdzK3CjXJxGxWdIngYXAEODyiFgh6UJgSUTMBz4LXCbpM2QN1h+JiOh+r9bK2n1IcTPbXt0SBEBELCBrfM6XXZCbXgn8RQ/7mF2X4BKf8fafdh9S3My2V9cE0ep8xtu/3C3SbGAZ1AmiuzPec+Yu45p7HmtSVK+08onnmDR6eM8rNlm7DyluZtsr9cCggaq7M9uNW7Y2OJLaJo0ezomHt/4VjbtFmg0sg/oKorsz3jEjOrju40c3IaL25m6RZgPLoE4QA+EhOq3G3SLNBo5BnSB8xmtm1r1BnSDAZ7zWutwF25pt0CcIs1bkLtjWCgZ1LyazVuVnMVgrcIIwa0G+6dBagROEWQvysxisFThBmLUg33RorcCN1GYtyF2wrRU4QZi1KHfBtmZzFZOZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQHxjUR/OWdvppX2Y2oDlB9MG8pZ3MunE5XZu2ANC5oYtZNy4HcJIwswGjrlVMkqZJWiVptaRzC5aPk3S7pKWSlkmansrfKeleScvTz+PqGWdvzVm4altyqOjatIU5C1c1KSIzs/5XtysISUOAi4F3AmuBxZLmR8TK3GrnA9dHxCWSJgELgPHA08DxEbFO0muBhUDLnJqv29DVq3Izs3ZUzyuII4HVEfFoRGwErgVOrFongOFpek9gHUBELI2Idal8BdAhadc6xtor+43o6FW5mVk7qmeCGAM8nptfyyuvAmYDH5K0luzq4ayC/bwPuC8iXqpeIOlMSUskLVm/fn3/RF3CzKkT6Rg6ZLuyjqFDmDl1YsNiMDOrt2Z3cz0VuCIixgLTgaskbYtJ0qHAV4CPF20cEZdGxJSImDJq1KiGBAxZQ/SXTjqMMSM6EDBmRAdfOukwN1Cb2YBSz15MncD+ufmxqSzvY8A0gIhYJGkYMBJ4StJY4CbgwxHxSB3j7JMZk8c4IZjZgFbPK4jFwEGSJkjaBTgFmF+1zmPA2wEkHQIMA9ZLGgH8CDg3Iu6sY4xmZtaNuiWIiNgMfJKsB9JDZL2VVki6UNIJabXPAmdIegC4BvhIRETa7kDgAkn3p9er6xWrmZm9krLv4/Y3ZcqUWLJkSbPDMDNrK5LujYgpRcua3UhtZmYtykNt2KDmMbXMuucEYYOWx9Qyq81VTDZoeUwts9qcIGzQ8phaZrU5Qdig5TG1zGpzgrBBy2NqmdXmRmobtCoN0e7FZFbMCcIGNY+pZdY9VzGZmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFRoww31LWg/8ptlx9GAk8HSzgyjJsdaHY62fdoq3lWI9ICIKn9k8YBJEO5C0pLtx11uNY60Px1o/7RRvu8TqKiYzMyvkBGFmZoWcIBrr0mYH0AuOtT4ca/20U7xtEavbIMzMrJCvIMzMrJAThJmZFXKC6CeS9pd0u6SVklZI+lQqny2pU9L96TU9t80sSaslrZI0tQkxr5G0PMW1JJXtLelWSb9KP/dK5ZL0zRTvMklHNDDOibnjd7+k5yR9ulWOraTLJT0l6cFcWa+Po6TT0vq/knRaA2OdI+mXKZ6bJI1I5eMldeWO77dz27w+/e2sTp9HDYq1179zSdNS2WpJ5/Z3nDVivS4X5xpJ96fyph7XXokIv/rhBYwGjkjTewAPA5OA2cDnCtafBDwA7ApMAB4BhjQ45jXAyKqyrwLnpulzga+k6enAjwEBbwR+0aTjPAT4LXBAqxxb4K3AEcCDfT2OwN7Ao+nnXml6rwbF+i5g5zT9lVys4/PrVe3nnhS/0ud5d4Ni7dXvPL0eAV4D7JLWmdSIWKuWfw24oBWOa29evoLoJxHxRETcl6afBx4Caj1o4ETg2oh4KSJ+DawGjqx/pD06Efhumv4uMCNXfmVk7gZGSBrdhPjeDjwSEbXumm/osY2InwPPFMTQm+M4Fbg1Ip6JiGeBW4FpjYg1In4SEZvT7N3A2Fr7SPEOj4i7I/tWu5KXP19dY62hu9/5kcDqiHg0IjYC16Z1GxZrugr4AHBNrX006rj2hhNEHUgaD0wGfpGKPpku3y+vVDWQJY/Hc5utpXZCqYcAfiLpXklnprJ9I+KJNP1bYN803QrxApzC9v9orXpse3scWyFmgI+SnblWTJC0VNIdkt6SysaQxVfR6Fh78ztvheP6FuDJiPhVrqwVj+srOEH0M0mvAv4L+HREPAdcAvwpcDjwBNmlZqt4c0QcAbwb+HtJb80vTGcxLdMPWtIuwAnADamolY/tNq12HLsj6TxgM/D9VPQEMC4iJgNnA1dLGt6s+JK2+J1XOZXtT2pa8bgWcoLoR5KGkiWH70fEjQAR8WREbImIrcBlvFzV0Qnsn9t8bCprmIjoTD+fAm5KsT1ZqTpKP59Kqzc9XrJEdl9EPAmtfWzp/XFsasySPgK8B/irlNBI1TW/S9P3ktXlH5ziyldDNSzWPvzOm31cdwZOAq6rlLXice2OE0Q/SfWM/wE8FBFfz5Xn6+nfC1R6OcwHTpG0q6QJwEFkDVSNind3SXtUpskaKh9McVV60JwG3JyL98OpF84bgd/nqlAaZbszsVY9trkYenMcFwLvkrRXqjZ5VyqrO0nTgHOAEyLiD7nyUZKGpOnXkB3HR1O8z0l6Y/q7/3Du89U71t7+zhcDB0makK5AT0nrNso7gF9GxLaqo1Y8rt1qZgv5QHoBbyarRlgG3J9e04GrgOWpfD4wOrfNeWRnD6tocG8Fsl4dD6TXCuC8VL4PcBvwK+C/gb1TuYCLU7zLgSkNjnd34HfAnrmylji2ZEnrCWATWb3xx/pyHMnq/1en1+kNjHU1WT195e/222nd96W/jfuB+4Djc/uZQvbl/AjwLdKoDA2Itde/8/R/+HBadl6jjmsqvwL4RNW6TT2uvXl5qA0zMyvkKiYzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQk4Q1hYk/ZukT+fmF0r6Tm7+a5LOrrH9FZJOTtM/k/SKB8ZLGirpy8pGU71P0iJJ707L1kga2Ye4t71vN8svTiN6rqwa4fNkSQuURlbtT5JGS/phjeW7SPp5usnLBjEnCGsXdwJvApC0EzASODS3/E3AXTv4Hl8kG5X3tZENQTKDbGTeuomIv4+Iw8n66j8SEYen19yImB4RG+rwtmeT3YXcXUwbye7h+Ms6vLe1EScIaxd3AUen6UPJbiZ6Pt15vCtwCHCfpAskLZb0oKRLy46nL2k34AzgrIh4CbYN63B9wbpnp/0/WHVV8+E0iNwDkq4q2O6L6YpiSMmY1kgaqez5Ab9M2z4s6fuS3iHpznS1c2Raf3dlA9jdkwaC627U0vcBt6RtDk3r359iPyitMw/4qzJx2sDlS0hrCxGxTtJmSePIrhYWkY10eTTwe2B5RGyU9K2IuBAgfUm/B/hBibc4EHgssgEWuyXp9cDpwFFkd0X/QtIdwEbgfOBNEfG0pL2rtptDdjVyevTt7tQDgfeT3W29GPgg2d37JwD/SHa1cx7w04j4aKqaukfSf0fEi7k4JgDPVpIg8AngGxHx/TQURSV5PQi8oQ9x2gDiKwhrJ3eRJYdKgliUm78zrfM2Sb+QtBw4ju2rofrDm4GbIuLFiHgBuJFsOOfjgBsi4mmAiMg/G+DzZEOEfKKPyQHg1xGxPLJB6lYAt6V9LSd7AA1k4zedq+zJZT8DhgHjqs322KYAAAHASURBVPYzGlifm18E/KOkfwAOiIiuFP8WYKPSeF02ODlBWDuptEMcRnaGezfZFcSbgLskDQP+HTg5Ig4jq2cfVnLfq4Fxqs+wy4uB11dfVfTSS7nprbn5rbxcEyDgfbl2jHER8VDVfrrIHZOIuJrsKqQLWCDpuNy6uwJ/3IGYrc05QVg7uYusyuiZyIZ8fgYYQZYk7uLlL76nlT2Xo9veQ9UiG8X0P4BvpKqWyqib769a9X+AGZJ2UzYK7ntT2U+B90vaJ22bTwa3AF8GflTnM/KFwFmVdhdJkwvWeZiXrzgqo4k+GhHfJBs59HWpfB/g6YjYVMd4rcU5QVg7WU7We+nuqrLfR8TTqcfPZWRXFwvJztx743yy6peVyh4+/0NguzaJyB4rewXZUNK/AL4TEUsjYgVwEXCHpAeAr1dtd0OKbb6kjl7GVdYXgaHAMkkr0vx2UnvEI5IOTEUfAB5M1VKvJXvMJcDbgB/VKU5rEx7N1WyQkfRe4PURcX6NdW4Ezo2IhxsXmbUa92IyG2Qi4qZKVViRVMU2z8nBfAVhZmaF3AZhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVuj/A37tMhoK6ZryAAAAAElFTkSuQmCC\n" + ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], "source": [ @@ -1828,7 +1829,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeXUlEQVR4nO3df3RV5Z3v8fenKUrGi4BCFUkE7EJGRQU9MnjpDzsOQlsVnVoLY1vtL8bbYltnFlVu77IO/TFVutpO12LGOpbqmtUKXC7F1DqLWluvq61WQlWUaDSiown2NoJgrUEgfO8feyccDifkBE5ycnY+r7XOyt7PfvbJ87DDJzt77/M8igjMzCy73lbpBpiZWf9y0JuZZZyD3sws4xz0ZmYZ56A3M8u4t1e6AYXGjBkTEydOrHQzzMyqysaNG1+NiLHFtg26oJ84cSKNjY2VboaZWVWR9F89bfOlGzOzjHPQm5llnIPezCzjBt01+mL27NlDa2sru3btqnRTBqXhw4dTV1fHsGHDKt0UMxuEqiLoW1tbGTFiBBMnTkRSpZszqEQE27Zto7W1lUmTJlW6OWY2CFVF0O/atcsh3wNJHH/88bS3t1e6KWbWg3WPtbFsfTNbd3Rw0qhaFs+ZwmXTxw/Y96+KoAcc8ofgfxuzwWvdY20sWfskHXs6AWjb0cGStU8CDFjY+2asmVk/Wra+uTvku3Ts6WTZ+uYBa4ODvkQvvvgiU6dOPez9161bR1NTUxlbZGbVYOuOjj6V9wcH/QDYu3evg95siDppVG2fyvuDg74P9u7dy1VXXcVpp53GFVdcwZtvvsnGjRt573vfy7nnnsucOXN45ZVXALjgggv44he/SC6X45ZbbqGhoYHFixczbdo0nn/++Qr3xMwGyuI5U6gdVnNAWe2wGhbPmTJgbaiam7Fd/umnm2na+npZ3/P0k47lK5ec0Wu95uZmfvCDHzBr1iw++clPsnz5cn7yk59wzz33MHbsWFatWsWXv/xlVqxYAcDu3bu7x+157rnnuPjii7niiivK2nYzG9y6brh+ac0mdnfuY3yxp242rYYHlsLOVhhZBxfeBGddWbY2VF3QV1J9fT2zZs0C4KMf/Sjf+MY3eOqpp5g9ezYAnZ2djBs3rrv+Rz7ykYq008wGl8umj+fuR18CYNXfn3/gxk2r4aefhz3pNfudLyfrULawLynoJc0F/gWoAe6IiG8WbD8ZuAsYlda5MSLuS7ctAT4FdAKfj4j1R9LgUs68+0vhY4wjRozgjDPO4OGHHy5a/5hjjhmIZplZNXtg6f6Q77KnIykvU9D3eo1eUg2wHHg/cDqwQNLpBdX+F7A6IqYD84F/Tfc9PV0/A5gL/Gv6flXppZde6g71H//4x8ycOZP29vbusj179rB58+ai+44YMYI//elPA9ZWM6sSO1v7Vn4YSrkZOwNoiYgtEbEbWAnMK6gTwLHp8khga7o8D1gZEW9FxAtAS/p+VWnKlCksX76c0047jddee43rrruONWvWcMMNN3D22Wczbdo0fvvb3xbdd/78+Sxbtozp06f7ZqyZ7Teyrm/lh6GUSzfjgZfz1luBvyqoczPwc0nXAccAf5O37yMF+x70UTBJC4GFACeffHIp7R5wEydO5JlnnjmofNq0aTz00EMHlT/44IMHrM+aNcuPV5rZwS686cBr9ADDapPyMinX45ULgDsjog74APAfkkp+74i4PSJyEZEbO7boTFhmZtl01pVwyfeg5uhkfWR9sj7AT920AfV563VpWb5PkVyDJyIeljQcGFPivmZmQ9tZV8LGu5LlT/ys7G9fyln3BmCypEmSjiK5udpQUOcl4EIASacBw4H2tN58SUdLmgRMBh4tV+PNzKx3vZ7RR8ReSYuA9SSPTq6IiM2SlgKNEdEA/CPw75KuJ7kxe01EBLBZ0mqgCdgLfC4iOot/JzMz6w8lPUefPhN/X0HZTXnLTcCsHvb9OvD1I2ijmZkdAY91Y2aWcQ76MnrwwQe5+OKLj+g97rzzTrZu3dp7RTOzEjnoD0NEsG/fvrK/b2dnp4PezMrOQV+iF198kSlTpvDxj3+cqVOn8qlPfYqpU6dy5plnsmrVqu56r7/+Oh/84AeZMmUK1157bfcvhJ///Oecf/75nHPOOXz4wx/mjTfeAJIPYt1www2cc8453H333TQ2NnLVVVcxbdo0Ojo6WLp0Keeddx5Tp05l4cKFJPe4zcxKV32jV/7njfCHJ8v7nieeCe//Zq/VnnvuOe666y7a2tq47bbbeOKJJ3j11Vc577zzeM973gPAo48+SlNTExMmTGDu3LmsXbuWCy64gK997Wv84he/4JhjjuGWW27h29/+NjfdlNzPPv744/n9738PwB133MG3vvUtcrkcAIsWLequ97GPfYx7772XSy65pLz9N7NMq76gr6AJEyYwc+ZMrr/+ehYsWEBNTQ0nnHAC733ve9mwYQPHHnssM2bM4JRTTgFgwYIF/PrXv2b48OE0NTV1D3G8e/duzj9//1ClhxrO+Fe/+hW33norb775Jtu3b+eMM85w0JtZn1Rf0Jdw5t1fShl2uHAoY0lEBLNnz+buu+/u0/vu2rWLz372szQ2NlJfX8/NN9/Mrl27+t5wMxvSfI3+MLz73e9m1apVdHZ20t7ezkMPPcSMGcmgnI8++igvvPAC+/btY9WqVbzrXe9i5syZ/OY3v6GlpQWAP//5zzz77LNF3zt/OOOuUB8zZgxvvPEGa9asGYDemVnWVN8Z/SBw+eWX8/DDD3P22WcjiVtvvZUTTzyRZ555hvPOO49FixbR0tLC+973Pi6//HLe9ra3ceedd7JgwQLeeustAL72ta9x6qmnHvTe11xzDddeey21tbU8/PDDfOYzn2Hq1KmceOKJnHfeeQPdVTPLAA22pzhyuVx0zbPa5emnn+a0006rUIuqg/+NzAa3j3w/maDooKkEu/zwg8nXwxzUTNLGiMgV2+ZLN2ZmGeegN8uiTavhO1Ph5lHJ102rK90iq6CquUYfEQc90WKJwXb5zSps0+oDZyza+XKyDmWdzMKqR1UE/fDhw9m2bRvHH3+8w75ARLBt2zaGDx9e6abYYPHA0gOnpYNk/Z5F+ye3sAF307adycIPRxav8Icnkw9v9oOqCPq6ujpaW1tpb2+vdFMGpeHDh1NXV76JhK3K7WwtXt751sC2w/rmxDPhzCv65a2rIuiHDRvGpEmTKt0Ms+owsi65XHNQeX2/TFNnpVna9dTNJ3p46qYflXQzVtJcSc2SWiTdWGT7dyQ9nr6elbQjb1tn3rbCKQjNrNwuvAmG1R5YNqw2Kbchqdczekk1wHJgNtAKbJDUkM4qBUBEXJ9X/zpget5bdETEtPI12cwOqeuG6z2Lkss1I+uTkPeN2CGrlEs3M4CWiNgCIGklMI9kHthiFgBfKU/zzOywnHXl/huvvlwz5JVy6WY8kH/BrzUtO4ikCcAk4Jd5xcMlNUp6RNJlPey3MK3T6BuuZmblVe4PTM0H1kREZ17ZhPRjuX8HfFfSOwt3iojbIyIXEbmxY8eWuUlmZkNbKUHfBtTnrdelZcXMBw4Yizci2tKvW4AHOfD6vZmZ9bNSgn4DMFnSJElHkYT5QU/PSPpLYDTwcF7ZaElHp8tjgFn0fG3fzMz6Qa83YyNir6RFwHqgBlgREZslLQUaI6Ir9OcDK+PAz+OfBnxf0j6SXyrfzH9ax8wO37rH2li2vpmtOzo4aVQti+dM4bLpRW+f2RBX0gemIuI+4L6CspsK1m8ust9vgf75TK/ZELbusTaWrH2Sjj3J7bC2HR0sWZvMpeywt0JV8clYMzvQsvXN3SHfpWNPJ19as4m7H30J2D+2StcnMq2yml55ndPHHVuR7+1his2q0NYdHUXLd3fuG+CWWKlOH3cs86ZV5q8tn9GbVaGTRtXSViTsx4+q3T+DUTpKYiXGVrHBxWf0lj1DYNKNxXOmUDus5oCy2mE1LJ4zpUItssHMZ/SWLUNk0o2uG65fWrOJ3Z37GO+nbuwQHPSWLUNo0o3LgMnHJDdczzhhJDxO8urSjxNZWHXxpRvLFk+6sV8/TmRh1cVn9JYtQ2zSjUpOZmHVw2f0li2edMPsIA56y5azroRLvgc1RyfrI+uT9QzdiDXrK1+6sezxpBtmB/AZvZlZxjnozcwyzkFvZpZxDnozs4xz0JuZZVxJQS9prqRmSS2Sbiyy/TuSHk9fz0rakbftaknPpa+ry9l4MzPrXa+PV0qqAZYDs4FWYIOkhvwpASPi+rz615FOAC7pOOArQA4IYGO672tl7YWZmfWolDP6GUBLRGyJiN3ASmDeIeovAO5Ol+cA90fE9jTc7wfmHkmDzcysb0r5wNR4IH/wkFbgr4pVlDQBmAT88hD7HjSOqqSFwEKAk08+uYQmmSU8QbZZ78r9ydj5wJqI6Oy1Zp6IuB24HSCXy0WZ22QZdcgJsivZMLNBppSgbwPq89br0rJi5gOfK9j3goJ9Hyy9eWY9O9QE2V3jtGd9YuxKTjht1aOUa/QbgMmSJkk6iiTMGworSfpLYDSQ/z9rPXCRpNGSRgMXpWVmR8wTZFd2wmmrHr2e0UfEXkmLSAK6BlgREZslLQUaI6Ir9OcDKyMi8vbdLumrJL8sAJZGxPbydsGGqkNNkH3GCZ4Y26xLSdfoI+I+4L6CspsK1m/uYd8VwIrDbF/fbVqdTCe3szWZhOLCmzxEbUYtnjPlgGv0kDdB9uOH2NFsiMnWMMVDZGJoSxxygmwHvVm3bAX9EJoY2hI9TpDtibHNumVrrBtPDG1dPDG2WbdsndEPsYmhLeEJss0OLVtn9J4Y2szsINkK+q6JoUfWA/LE0GZmZO3SDSSh7mA3M+uWrTN6MzM7iIPezCzjHPRmZhnnoDczyzgHvZlZxjnozcwyzkFvZpZxDnozs4xz0JuZZVxJQS9prqRmSS2SbuyhzpWSmiRtlvTjvPJOSY+nr4OmIDQzs/7V6xAIkmqA5cBsoBXYIKkhIpry6kwGlgCzIuI1Se/Ie4uOiJhW5nabmVmJSjmjnwG0RMSWiNgNrATmFdT5DLA8Il4DiIg/lreZZmZ2uEoJ+vFA/iDvrWlZvlOBUyX9RtIjkubmbRsuqTEtv6zYN5C0MK3T2N7e3qcOmJnZoZVr9Mq3A5OBC4A64CFJZ0bEDmBCRLRJOgX4paQnI+L5/J0j4nbgdoBcLhdlapOZmVHaGX0bUJ+3XpeW5WsFGiJiT0S8ADxLEvxERFv6dQvwIDD9CNtsZmZ9UErQbwAmS5ok6ShgPlD49Mw6krN5JI0huZSzRdJoSUfnlc8CmjAzswHT66WbiNgraRGwHqgBVkTEZklLgcaIaEi3XSSpCegEFkfENkn/Hfi+pH0kv1S+mf+0Tjmte6yNZeub2bqjg5NG1bJ4zhQum154K8HMbOgp6Rp9RNwH3FdQdlPecgD/kL7y6/wWOPPIm3lo6x5rY8naJ+nY0wlA244Olqx9EsBhb2ZDXiamEly2vrk75Lt07OnkS2s2cfejL1WoVTZQml55ndPHHVvpZpgNWpkYAmHrjo6i5bs79w1wS6wSTh93LPOm+S83s55k4oz+pFG1tBUJ+/Gjaln19+dXoEVmZoNHJs7oF8+ZQu2wmgPKaofVsHjOlAq1yMxs8MjEGX3XDVc/dWNmdrBMBD0kYe9gNzM7WCYu3ZiZWc8c9GZmGeegNzPLOAe9mVnGOejNzDLOQW9mlnEOejOzjHPQm5llnIPezCzjHPRmZhlXUtBLmiupWVKLpBt7qHOlpCZJmyX9OK/8aknPpa+ry9VwMzMrTa9j3UiqAZYDs0kmAd8gqSF/SkBJk4ElwKyIeE3SO9Ly44CvADkggI3pvq+VvytmZlZMKWf0M4CWiNgSEbuBlcC8gjqfAZZ3BXhE/DEtnwPcHxHb0233A3PL03QzMytFKUE/Hng5b701Lct3KnCqpN9IekTS3D7si6SFkholNba3t5feejMz61W5bsa+HZgMXAAsAP5d0qhSd46I2yMiFxG5sWPHlqlJZmYGpQV9G1Cft16XluVrBRoiYk9EvAA8SxL8pexrZmb9qJSg3wBMljRJ0lHAfKChoM46krN5JI0huZSzBVgPXCRptKTRwEVpmZmZDZBen7qJiL2SFpEEdA2wIiI2S1oKNEZEA/sDvQnoBBZHxDYASV8l+WUBsDQitvdHR8zMrDhFRKXbcIBcLheNjY2VboaZWVWRtDEicsW2+ZOxZmYZ56A3M8s4B72ZWcY56M3MMs5Bb2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGeegNzPLOAe9mVnGOejNzDLOQW9mlnEOejOzjHPQm5llXK8Tj9jgt+6xNpatb2brjg5OGlXL4jlTuGz6QXOwm9kQVdIZvaS5kpoltUi6scj2ayS1S3o8fX06b1tnXnnhFIR2hNY91saStU/StqODANp2dLBk7ZOse8xT85pZotczekk1wHJgNskk4BskNUREU0HVVRGxqMhbdETEtCNvqhWzbH0zHXs6Dyjr2NPJsvXNPqs3M6C0M/oZQEtEbImI3cBKYF7/NstKtXVHR5/KzWzoKSXoxwMv5623pmWFPiRpk6Q1kurzyodLapT0iKTLin0DSQvTOo3t7e2lt944aVRtn8rNbOgp11M3PwUmRsRZwP3AXXnbJqQT1v4d8F1J7yzcOSJuj4hcROTGjh1bpiYNDYvnTKF2WM0BZbXDalg8Z0qFWmRmg00pQd8G5J+h16Vl3SJiW0S8la7eAZybt60t/boFeBCYfgTttQKXTR/PP//tmYwfVYuA8aNq+ee/PdPX582sWymPV24AJkuaRBLw80nOzrtJGhcRr6SrlwJPp+WjgTcj4i1JY4BZwK3larwlLps+3sFuZj3qNegjYq+kRcB6oAZYERGbJS0FGiOiAfi8pEuBvcB24Jp099OA70vaR/LXwzeLPK1jZmb9SBFR6TYcIJfLRWNjY6WbYWZWVSRtTO+HHsRDIJiZZZyD3sws4xz0ZmYZ56A3M8s4B72ZWcY56M3MMs5Bb2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGeegNzPLOAe9mVnGOejNzDLOQW9mlnEOejOzjCsp6CXNldQsqUXSjUW2XyOpXdLj6evTeduulvRc+rq6nI03M7Pe9TqVoKQaYDkwG2gFNkhqKDIl4KqIWFSw73HAV4AcEMDGdN/XytJ6MzPrVSln9DOAlojYEhG7gZXAvBLffw5wf0RsT8P9fmDu4TXVzMwORylBPx54OW+9NS0r9CFJmyStkVTfl30lLZTUKKmxvb29xKabmVkpynUz9qfAxIg4i+Ss/a6+7BwRt0dELiJyY8eOLVOTzMwMSgv6NqA+b70uLesWEdsi4q109Q7g3FL3NTOz/lVK0G8AJkuaJOkoYD7QkF9B0ri81UuBp9Pl9cBFkkZLGg1clJaZmdkA6fWpm4jYK2kRSUDXACsiYrOkpUBjRDQAn5d0KbAX2A5ck+67XdJXSX5ZACyNiO390A8zM+uBIqLSbThALpeLxsbGSjfDzKyqSNoYEbli2/zJWDOzjHPQm5llnIPezCzjHPRmZhnnoDczyzgHvZlZxjnozcwyzkFvZpZxDnozs4xz0JuZZZyD3sws4xz0ZmYZ56A3M8s4B72ZWcY56M3MMq6koJc0V1KzpBZJNx6i3ockhaRcuj5RUoekx9PXbeVquJmZlabXGaYk1QDLgdlAK7BBUkNENBXUGwF8AfhdwVs8HxHTytReMzPro1LO6GcALRGxJSJ2AyuBeUXqfRW4BdhVxvaZmdkRKiXoxwMv5623pmXdJJ0D1EfEz4rsP0nSY5L+r6R3H35TzczscPR66aY3kt4GfJt0QvACrwAnR8Q2SecC6ySdERGvF7zHQmAhwMknn3ykTTIzszylnNG3AfV563VpWZcRwFTgQUkvAjOBBkm5iHgrIrYBRMRG4Hng1MJvEBG3R0QuInJjx449vJ6YmVlRpQT9BmCypEmSjgLmAw1dGyNiZ0SMiYiJETEReAS4NCIaJY1Nb+Yi6RRgMrCl7L0wM7Me9XrpJiL2SloErAdqgBURsVnSUqAxIhoOsft7gKWS9gD7gGsjYns5Gm5mZqVRRFS6DQfI5XLR2NhY6WaYmVUVSRsjIldsmz8Za2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGeegNzPLOAe9mVnGOeizZtNq+M5UuHlU8nXT6kq3yMwq7IgHNbNBZNNq+OnnYU9Hsr7z5WQd4KwrK9cuM6son9FnyQNL94d8lz0dSbmZDVkO+izZ2dq3cjMbEhz0WTKyrm/lZjYkOOiz5MKbYFjtgWXDapNyMxuyHPRZctaVcMn3YGQ9oOTrJd/zjVizIc5P3WTNWVc62M3sAD6jNzPLuJKCXtJcSc2SWiTdeIh6H5IUknJ5ZUvS/ZolzSlHo83MrHS9XrpJ53xdDswGWoENkhoioqmg3gjgC8Dv8spOJ5lj9gzgJOAXkk6NiM7ydcHMzA6llDP6GUBLRGyJiN3ASmBekXpfBW4BduWVzQNWRsRbEfEC0JK+n5mZDZBSgn488HLeemta1k3SOUB9RPysr/uamVn/OuKnbiS9Dfg2cM0RvMdCYGG6+oak5oIqY4BXD/f9B5ks9QWy1R/3ZfDKUn/6qy8TetpQStC3AfV563VpWZcRwFTgQUkAJwINki4tYV8AIuJ24PaeGiCpsafZzatNlvoC2eqP+zJ4Zak/lehLKZduNgCTJU2SdBTJzdWGro0RsTMixkTExIiYCDwCXBoRjWm9+ZKOljQJmAw8WvZemJlZj3o9o4+IvZIWAeuBGmBFRGyWtBRojIiGQ+y7WdJqoAnYC3zOT9yYmQ2skq7RR8R9wH0FZUUHUImICwrWvw58/TDb16XHyzpVKEt9gWz1x30ZvLLUnwHviyJioL+nmZkNIA+BYGaWcQ56M7OMq3jQS6qX9CtJTZI2S/pCWn6cpPslPZd+HZ2WS9L30vFzNqUf1hpUJNVIekzSven6JEm/S9u8Kn16ifRppFVp+e8kTaxku4uRNErSGknPSHpa0vnVemwkXZ/+jD0l6W5Jw6vp2EhaIemPkp7KK+vzsZB0dVr/OUlXD6K+LEt/zjZJ+omkUXnbio6ZpRLH4epvxfqTt+0flYwBNiZdH/hjExEVfQHjgHPS5RHAs8DpwK3AjWn5jcAt6fIHgP8EBMwEflfpPhTp0z8APwbuTddXA/PT5duA/5Eufxa4LV2eD6yqdNuL9OUu4NPp8lHAqGo8NiSfyH4BqM07JtdU07EB3gOcAzyVV9anYwEcB2xJv45Ol0cPkr5cBLw9Xb4lry+nA08ARwOTgOdJngCsSZdPSX82nwBOHyzHJi2vJ3li8b+AMZU6NhX9we3hH+wekgHUmoFxadk4oDld/j6wIK9+d73B8CL5UNgDwF8D96YH89W8H+DzgfXp8nrg/HT57Wk9VboPeX0ZmYajCsqr7tiwfziO49J/63uBOdV2bICJBeHYp2MBLAC+n1d+QL1K9qVg2+XAj9LlJcCSvG3r02PVfbyK1RsM/QHWAGcDL7I/6Af82FT80k2+9M/j6SQjYJ4QEa+km/4AnJAuD/bxc74LfAnYl64fD+yIiL3pen57u/uSbt+Z1h8sJgHtwA/TS1F3SDqGKjw2EdEGfAt4CXiF5N96I9V7bLr09VgM2mNU4JMkZ71QpX2RNA9oi4gnCjYNeH8GTdBL+m/A/wG+GBGv52+L5NfboH8OVNLFwB8jYmOl21Imbyf5c/TfImI68GeSywPdqujYjCYZTXUSyZDZxwBzK9qoMquWY9EbSV8m+YDljyrdlsMl6S+A/wkMigmbB0XQSxpGEvI/ioi1afH/kzQu3T4O+GNaXtL4ORUyC7hU0oskwzn/NfAvwChJXR9Oy29vd1/S7SOBbQPZ4F60Aq0R0TXHwBqS4K/GY/M3wAsR0R4Re4C1JMerWo9Nl74ei8F8jJB0DXAxcFX6iwuqsy/vJDmpeCLNgzrg95JOpAL9qXjQSxLwA+DpiPh23qYGoOuu89Uk1+67yj+e3rmeCezM+9O1oiJiSUTURTLmz3zglxFxFfAr4Iq0WmFfuvp4RVp/0JyRRcQfgJclTUmLLiQZzqLqjg3JJZuZkv4i/Znr6ktVHps8fT0W64GLJI1O/8q5KC2rOElzSS57XhoRb+Zt6mnMrEOOw1VJEfFkRLwj9o8B1kry0MkfqMSxqdSNi7wbDu8i+XNzE/B4+voAyfXQB4DngF8Ax6X1RTLj1fPAk0Cu0n3ooV8XsP+pm1NIfjBbgP8NHJ2WD0/XW9Ltp1S63UX6MQ1oTI/POpKnAary2AD/BDwDPAX8B8lTHFVzbIC7Se4v7CEJjk8dzrEguf7dkr4+MYj60kJyjborB27Lq//ltC/NwPvzyj9A8qTe88CXB9OxKdj+Ivtvxg74sfEQCGZmGVfxSzdmZta/HPRmZhnnoDczyzgHvZlZxjnozcwyzkFvZpZxDnozs4z7/xQNBu15VctMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeXUlEQVR4nO3df3RV5Z3v8fenKUrGi4BCFUkE7EJGRQU9MnjpDzsOQlsVnVoLY1vtL8bbYltnFlVu77IO/TFVutpO12LGOpbqmtUKXC7F1DqLWluvq61WQlWUaDSiown2NoJgrUEgfO8feyccDifkBE5ycnY+r7XOyt7PfvbJ87DDJzt77/M8igjMzCy73lbpBpiZWf9y0JuZZZyD3sws4xz0ZmYZ56A3M8u4t1e6AYXGjBkTEydOrHQzzMyqysaNG1+NiLHFtg26oJ84cSKNjY2VboaZWVWR9F89bfOlGzOzjHPQm5llnIPezCzjBt01+mL27NlDa2sru3btqnRTBqXhw4dTV1fHsGHDKt0UMxuEqiLoW1tbGTFiBBMnTkRSpZszqEQE27Zto7W1lUmTJlW6OWY2CFVF0O/atcsh3wNJHH/88bS3t1e6KWbWg3WPtbFsfTNbd3Rw0qhaFs+ZwmXTxw/Y96+KoAcc8ofgfxuzwWvdY20sWfskHXs6AWjb0cGStU8CDFjY+2asmVk/Wra+uTvku3Ts6WTZ+uYBa4ODvkQvvvgiU6dOPez9161bR1NTUxlbZGbVYOuOjj6V9wcH/QDYu3evg95siDppVG2fyvuDg74P9u7dy1VXXcVpp53GFVdcwZtvvsnGjRt573vfy7nnnsucOXN45ZVXALjgggv44he/SC6X45ZbbqGhoYHFixczbdo0nn/++Qr3xMwGyuI5U6gdVnNAWe2wGhbPmTJgbaiam7Fd/umnm2na+npZ3/P0k47lK5ec0Wu95uZmfvCDHzBr1iw++clPsnz5cn7yk59wzz33MHbsWFatWsWXv/xlVqxYAcDu3bu7x+157rnnuPjii7niiivK2nYzG9y6brh+ac0mdnfuY3yxp242rYYHlsLOVhhZBxfeBGddWbY2VF3QV1J9fT2zZs0C4KMf/Sjf+MY3eOqpp5g9ezYAnZ2djBs3rrv+Rz7ykYq008wGl8umj+fuR18CYNXfn3/gxk2r4aefhz3pNfudLyfrULawLynoJc0F/gWoAe6IiG8WbD8ZuAsYlda5MSLuS7ctAT4FdAKfj4j1R9LgUs68+0vhY4wjRozgjDPO4OGHHy5a/5hjjhmIZplZNXtg6f6Q77KnIykvU9D3eo1eUg2wHHg/cDqwQNLpBdX+F7A6IqYD84F/Tfc9PV0/A5gL/Gv6flXppZde6g71H//4x8ycOZP29vbusj179rB58+ai+44YMYI//elPA9ZWM6sSO1v7Vn4YSrkZOwNoiYgtEbEbWAnMK6gTwLHp8khga7o8D1gZEW9FxAtAS/p+VWnKlCksX76c0047jddee43rrruONWvWcMMNN3D22Wczbdo0fvvb3xbdd/78+Sxbtozp06f7ZqyZ7Teyrm/lh6GUSzfjgZfz1luBvyqoczPwc0nXAccAf5O37yMF+x70UTBJC4GFACeffHIp7R5wEydO5JlnnjmofNq0aTz00EMHlT/44IMHrM+aNcuPV5rZwS686cBr9ADDapPyMinX45ULgDsjog74APAfkkp+74i4PSJyEZEbO7boTFhmZtl01pVwyfeg5uhkfWR9sj7AT920AfV563VpWb5PkVyDJyIeljQcGFPivmZmQ9tZV8LGu5LlT/ys7G9fyln3BmCypEmSjiK5udpQUOcl4EIASacBw4H2tN58SUdLmgRMBh4tV+PNzKx3vZ7RR8ReSYuA9SSPTq6IiM2SlgKNEdEA/CPw75KuJ7kxe01EBLBZ0mqgCdgLfC4iOot/JzMz6w8lPUefPhN/X0HZTXnLTcCsHvb9OvD1I2ijmZkdAY91Y2aWcQ76MnrwwQe5+OKLj+g97rzzTrZu3dp7RTOzEjnoD0NEsG/fvrK/b2dnp4PezMrOQV+iF198kSlTpvDxj3+cqVOn8qlPfYqpU6dy5plnsmrVqu56r7/+Oh/84AeZMmUK1157bfcvhJ///Oecf/75nHPOOXz4wx/mjTfeAJIPYt1www2cc8453H333TQ2NnLVVVcxbdo0Ojo6WLp0Keeddx5Tp05l4cKFJPe4zcxKV32jV/7njfCHJ8v7nieeCe//Zq/VnnvuOe666y7a2tq47bbbeOKJJ3j11Vc577zzeM973gPAo48+SlNTExMmTGDu3LmsXbuWCy64gK997Wv84he/4JhjjuGWW27h29/+NjfdlNzPPv744/n9738PwB133MG3vvUtcrkcAIsWLequ97GPfYx7772XSy65pLz9N7NMq76gr6AJEyYwc+ZMrr/+ehYsWEBNTQ0nnHAC733ve9mwYQPHHnssM2bM4JRTTgFgwYIF/PrXv2b48OE0NTV1D3G8e/duzj9//1ClhxrO+Fe/+hW33norb775Jtu3b+eMM85w0JtZn1Rf0Jdw5t1fShl2uHAoY0lEBLNnz+buu+/u0/vu2rWLz372szQ2NlJfX8/NN9/Mrl27+t5wMxvSfI3+MLz73e9m1apVdHZ20t7ezkMPPcSMGcmgnI8++igvvPAC+/btY9WqVbzrXe9i5syZ/OY3v6GlpQWAP//5zzz77LNF3zt/OOOuUB8zZgxvvPEGa9asGYDemVnWVN8Z/SBw+eWX8/DDD3P22WcjiVtvvZUTTzyRZ555hvPOO49FixbR0tLC+973Pi6//HLe9ra3ceedd7JgwQLeeustAL72ta9x6qmnHvTe11xzDddeey21tbU8/PDDfOYzn2Hq1KmceOKJnHfeeQPdVTPLAA22pzhyuVx0zbPa5emnn+a0006rUIuqg/+NzAa3j3w/maDooKkEu/zwg8nXwxzUTNLGiMgV2+ZLN2ZmGeegN8uiTavhO1Ph5lHJ102rK90iq6CquUYfEQc90WKJwXb5zSps0+oDZyza+XKyDmWdzMKqR1UE/fDhw9m2bRvHH3+8w75ARLBt2zaGDx9e6abYYPHA0gOnpYNk/Z5F+ye3sAF307adycIPRxav8Icnkw9v9oOqCPq6ujpaW1tpb2+vdFMGpeHDh1NXV76JhK3K7WwtXt751sC2w/rmxDPhzCv65a2rIuiHDRvGpEmTKt0Ms+owsi65XHNQeX2/TFNnpVna9dTNJ3p46qYflXQzVtJcSc2SWiTdWGT7dyQ9nr6elbQjb1tn3rbCKQjNrNwuvAmG1R5YNqw2Kbchqdczekk1wHJgNtAKbJDUkM4qBUBEXJ9X/zpget5bdETEtPI12cwOqeuG6z2Lkss1I+uTkPeN2CGrlEs3M4CWiNgCIGklMI9kHthiFgBfKU/zzOywnHXl/huvvlwz5JVy6WY8kH/BrzUtO4ikCcAk4Jd5xcMlNUp6RNJlPey3MK3T6BuuZmblVe4PTM0H1kREZ17ZhPRjuX8HfFfSOwt3iojbIyIXEbmxY8eWuUlmZkNbKUHfBtTnrdelZcXMBw4Yizci2tKvW4AHOfD6vZmZ9bNSgn4DMFnSJElHkYT5QU/PSPpLYDTwcF7ZaElHp8tjgFn0fG3fzMz6Qa83YyNir6RFwHqgBlgREZslLQUaI6Ir9OcDK+PAz+OfBnxf0j6SXyrfzH9ax8wO37rH2li2vpmtOzo4aVQti+dM4bLpRW+f2RBX0gemIuI+4L6CspsK1m8ust9vgf75TK/ZELbusTaWrH2Sjj3J7bC2HR0sWZvMpeywt0JV8clYMzvQsvXN3SHfpWNPJ19as4m7H30J2D+2StcnMq2yml55ndPHHVuR7+1his2q0NYdHUXLd3fuG+CWWKlOH3cs86ZV5q8tn9GbVaGTRtXSViTsx4+q3T+DUTpKYiXGVrHBxWf0lj1DYNKNxXOmUDus5oCy2mE1LJ4zpUItssHMZ/SWLUNk0o2uG65fWrOJ3Z37GO+nbuwQHPSWLUNo0o3LgMnHJDdczzhhJDxO8urSjxNZWHXxpRvLFk+6sV8/TmRh1cVn9JYtQ2zSjUpOZmHVw2f0li2edMPsIA56y5azroRLvgc1RyfrI+uT9QzdiDXrK1+6sezxpBtmB/AZvZlZxjnozcwyzkFvZpZxDnozs4xz0JuZZVxJQS9prqRmSS2Sbiyy/TuSHk9fz0rakbftaknPpa+ry9l4MzPrXa+PV0qqAZYDs4FWYIOkhvwpASPi+rz615FOAC7pOOArQA4IYGO672tl7YWZmfWolDP6GUBLRGyJiN3ASmDeIeovAO5Ol+cA90fE9jTc7wfmHkmDzcysb0r5wNR4IH/wkFbgr4pVlDQBmAT88hD7HjSOqqSFwEKAk08+uYQmmSU8QbZZ78r9ydj5wJqI6Oy1Zp6IuB24HSCXy0WZ22QZdcgJsivZMLNBppSgbwPq89br0rJi5gOfK9j3goJ9Hyy9eWY9O9QE2V3jtGd9YuxKTjht1aOUa/QbgMmSJkk6iiTMGworSfpLYDSQ/z9rPXCRpNGSRgMXpWVmR8wTZFd2wmmrHr2e0UfEXkmLSAK6BlgREZslLQUaI6Ir9OcDKyMi8vbdLumrJL8sAJZGxPbydsGGqkNNkH3GCZ4Y26xLSdfoI+I+4L6CspsK1m/uYd8VwIrDbF/fbVqdTCe3szWZhOLCmzxEbUYtnjPlgGv0kDdB9uOH2NFsiMnWMMVDZGJoSxxygmwHvVm3bAX9EJoY2hI9TpDtibHNumVrrBtPDG1dPDG2WbdsndEPsYmhLeEJss0OLVtn9J4Y2szsINkK+q6JoUfWA/LE0GZmZO3SDSSh7mA3M+uWrTN6MzM7iIPezCzjHPRmZhnnoDczyzgHvZlZxjnozcwyzkFvZpZxDnozs4xz0JuZZVxJQS9prqRmSS2SbuyhzpWSmiRtlvTjvPJOSY+nr4OmIDQzs/7V6xAIkmqA5cBsoBXYIKkhIpry6kwGlgCzIuI1Se/Ie4uOiJhW5nabmVmJSjmjnwG0RMSWiNgNrATmFdT5DLA8Il4DiIg/lreZZmZ2uEoJ+vFA/iDvrWlZvlOBUyX9RtIjkubmbRsuqTEtv6zYN5C0MK3T2N7e3qcOmJnZoZVr9Mq3A5OBC4A64CFJZ0bEDmBCRLRJOgX4paQnI+L5/J0j4nbgdoBcLhdlapOZmVHaGX0bUJ+3XpeW5WsFGiJiT0S8ADxLEvxERFv6dQvwIDD9CNtsZmZ9UErQbwAmS5ok6ShgPlD49Mw6krN5JI0huZSzRdJoSUfnlc8CmjAzswHT66WbiNgraRGwHqgBVkTEZklLgcaIaEi3XSSpCegEFkfENkn/Hfi+pH0kv1S+mf+0Tjmte6yNZeub2bqjg5NG1bJ4zhQum154K8HMbOgp6Rp9RNwH3FdQdlPecgD/kL7y6/wWOPPIm3lo6x5rY8naJ+nY0wlA244Olqx9EsBhb2ZDXiamEly2vrk75Lt07OnkS2s2cfejL1WoVTZQml55ndPHHVvpZpgNWpkYAmHrjo6i5bs79w1wS6wSTh93LPOm+S83s55k4oz+pFG1tBUJ+/Gjaln19+dXoEVmZoNHJs7oF8+ZQu2wmgPKaofVsHjOlAq1yMxs8MjEGX3XDVc/dWNmdrBMBD0kYe9gNzM7WCYu3ZiZWc8c9GZmGeegNzPLOAe9mVnGOejNzDLOQW9mlnEOejOzjHPQm5llnIPezCzjHPRmZhlXUtBLmiupWVKLpBt7qHOlpCZJmyX9OK/8aknPpa+ry9VwMzMrTa9j3UiqAZYDs0kmAd8gqSF/SkBJk4ElwKyIeE3SO9Ly44CvADkggI3pvq+VvytmZlZMKWf0M4CWiNgSEbuBlcC8gjqfAZZ3BXhE/DEtnwPcHxHb0233A3PL03QzMytFKUE/Hng5b701Lct3KnCqpN9IekTS3D7si6SFkholNba3t5feejMz61W5bsa+HZgMXAAsAP5d0qhSd46I2yMiFxG5sWPHlqlJZmYGpQV9G1Cft16XluVrBRoiYk9EvAA8SxL8pexrZmb9qJSg3wBMljRJ0lHAfKChoM46krN5JI0huZSzBVgPXCRptKTRwEVpmZmZDZBen7qJiL2SFpEEdA2wIiI2S1oKNEZEA/sDvQnoBBZHxDYASV8l+WUBsDQitvdHR8zMrDhFRKXbcIBcLheNjY2VboaZWVWRtDEicsW2+ZOxZmYZ56A3M8s4B72ZWcY56M3MMs5Bb2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGeegNzPLOAe9mVnGOejNzDLOQW9mlnEOejOzjHPQm5llXK8Tj9jgt+6xNpatb2brjg5OGlXL4jlTuGz6QXOwm9kQVdIZvaS5kpoltUi6scj2ayS1S3o8fX06b1tnXnnhFIR2hNY91saStU/StqODANp2dLBk7ZOse8xT85pZotczekk1wHJgNskk4BskNUREU0HVVRGxqMhbdETEtCNvqhWzbH0zHXs6Dyjr2NPJsvXNPqs3M6C0M/oZQEtEbImI3cBKYF7/NstKtXVHR5/KzWzoKSXoxwMv5623pmWFPiRpk6Q1kurzyodLapT0iKTLin0DSQvTOo3t7e2lt944aVRtn8rNbOgp11M3PwUmRsRZwP3AXXnbJqQT1v4d8F1J7yzcOSJuj4hcROTGjh1bpiYNDYvnTKF2WM0BZbXDalg8Z0qFWmRmg00pQd8G5J+h16Vl3SJiW0S8la7eAZybt60t/boFeBCYfgTttQKXTR/PP//tmYwfVYuA8aNq+ee/PdPX582sWymPV24AJkuaRBLw80nOzrtJGhcRr6SrlwJPp+WjgTcj4i1JY4BZwK3larwlLps+3sFuZj3qNegjYq+kRcB6oAZYERGbJS0FGiOiAfi8pEuBvcB24Jp099OA70vaR/LXwzeLPK1jZmb9SBFR6TYcIJfLRWNjY6WbYWZWVSRtTO+HHsRDIJiZZZyD3sws4xz0ZmYZ56A3M8s4B72ZWcY56M3MMs5Bb2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGeegNzPLOAe9mVnGOejNzDLOQW9mlnEOejOzjCsp6CXNldQsqUXSjUW2XyOpXdLj6evTeduulvRc+rq6nI03M7Pe9TqVoKQaYDkwG2gFNkhqKDIl4KqIWFSw73HAV4AcEMDGdN/XytJ6MzPrVSln9DOAlojYEhG7gZXAvBLffw5wf0RsT8P9fmDu4TXVzMwORylBPx54OW+9NS0r9CFJmyStkVTfl30lLZTUKKmxvb29xKabmVkpynUz9qfAxIg4i+Ss/a6+7BwRt0dELiJyY8eOLVOTzMwMSgv6NqA+b70uLesWEdsi4q109Q7g3FL3NTOz/lVK0G8AJkuaJOkoYD7QkF9B0ri81UuBp9Pl9cBFkkZLGg1clJaZmdkA6fWpm4jYK2kRSUDXACsiYrOkpUBjRDQAn5d0KbAX2A5ck+67XdJXSX5ZACyNiO390A8zM+uBIqLSbThALpeLxsbGSjfDzKyqSNoYEbli2/zJWDOzjHPQm5llnIPezCzjHPRmZhnnoDczyzgHvZlZxjnozcwyzkFvZpZxDnozs4xz0JuZZZyD3sws4xz0ZmYZ56A3M8s4B72ZWcY56M3MMq6koJc0V1KzpBZJNx6i3ockhaRcuj5RUoekx9PXbeVquJmZlabXGaYk1QDLgdlAK7BBUkNENBXUGwF8AfhdwVs8HxHTytReMzPro1LO6GcALRGxJSJ2AyuBeUXqfRW4BdhVxvaZmdkRKiXoxwMv5623pmXdJJ0D1EfEz4rsP0nSY5L+r6R3H35TzczscPR66aY3kt4GfJt0QvACrwAnR8Q2SecC6ySdERGvF7zHQmAhwMknn3ykTTIzszylnNG3AfV563VpWZcRwFTgQUkvAjOBBkm5iHgrIrYBRMRG4Hng1MJvEBG3R0QuInJjx449vJ6YmVlRpQT9BmCypEmSjgLmAw1dGyNiZ0SMiYiJETEReAS4NCIaJY1Nb+Yi6RRgMrCl7L0wM7Me9XrpJiL2SloErAdqgBURsVnSUqAxIhoOsft7gKWS9gD7gGsjYns5Gm5mZqVRRFS6DQfI5XLR2NhY6WaYmVUVSRsjIldsmz8Za2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGeegNzPLOAe9mVnGOeizZtNq+M5UuHlU8nXT6kq3yMwq7IgHNbNBZNNq+OnnYU9Hsr7z5WQd4KwrK9cuM6son9FnyQNL94d8lz0dSbmZDVkO+izZ2dq3cjMbEhz0WTKyrm/lZjYkOOiz5MKbYFjtgWXDapNyMxuyHPRZctaVcMn3YGQ9oOTrJd/zjVizIc5P3WTNWVc62M3sAD6jNzPLuJKCXtJcSc2SWiTdeIh6H5IUknJ5ZUvS/ZolzSlHo83MrHS9XrpJ53xdDswGWoENkhoioqmg3gjgC8Dv8spOJ5lj9gzgJOAXkk6NiM7ydcHMzA6llDP6GUBLRGyJiN3ASmBekXpfBW4BduWVzQNWRsRbEfEC0JK+n5mZDZBSgn488HLeemta1k3SOUB9RPysr/uamVn/OuKnbiS9Dfg2cM0RvMdCYGG6+oak5oIqY4BXD/f9B5ks9QWy1R/3ZfDKUn/6qy8TetpQStC3AfV563VpWZcRwFTgQUkAJwINki4tYV8AIuJ24PaeGiCpsafZzatNlvoC2eqP+zJ4Zak/lehLKZduNgCTJU2SdBTJzdWGro0RsTMixkTExIiYCDwCXBoRjWm9+ZKOljQJmAw8WvZemJlZj3o9o4+IvZIWAeuBGmBFRGyWtBRojIiGQ+y7WdJqoAnYC3zOT9yYmQ2skq7RR8R9wH0FZUUHUImICwrWvw58/TDb16XHyzpVKEt9gWz1x30ZvLLUnwHviyJioL+nmZkNIA+BYGaWcQ56M7OMq3jQS6qX9CtJTZI2S/pCWn6cpPslPZd+HZ2WS9L30vFzNqUf1hpUJNVIekzSven6JEm/S9u8Kn16ifRppFVp+e8kTaxku4uRNErSGknPSHpa0vnVemwkXZ/+jD0l6W5Jw6vp2EhaIemPkp7KK+vzsZB0dVr/OUlXD6K+LEt/zjZJ+omkUXnbio6ZpRLH4epvxfqTt+0flYwBNiZdH/hjExEVfQHjgHPS5RHAs8DpwK3AjWn5jcAt6fIHgP8EBMwEflfpPhTp0z8APwbuTddXA/PT5duA/5Eufxa4LV2eD6yqdNuL9OUu4NPp8lHAqGo8NiSfyH4BqM07JtdU07EB3gOcAzyVV9anYwEcB2xJv45Ol0cPkr5cBLw9Xb4lry+nA08ARwOTgOdJngCsSZdPSX82nwBOHyzHJi2vJ3li8b+AMZU6NhX9we3hH+wekgHUmoFxadk4oDld/j6wIK9+d73B8CL5UNgDwF8D96YH89W8H+DzgfXp8nrg/HT57Wk9VboPeX0ZmYajCsqr7tiwfziO49J/63uBOdV2bICJBeHYp2MBLAC+n1d+QL1K9qVg2+XAj9LlJcCSvG3r02PVfbyK1RsM/QHWAGcDL7I/6Af82FT80k2+9M/j6SQjYJ4QEa+km/4AnJAuD/bxc74LfAnYl64fD+yIiL3pen57u/uSbt+Z1h8sJgHtwA/TS1F3SDqGKjw2EdEGfAt4CXiF5N96I9V7bLr09VgM2mNU4JMkZ71QpX2RNA9oi4gnCjYNeH8GTdBL+m/A/wG+GBGv52+L5NfboH8OVNLFwB8jYmOl21Imbyf5c/TfImI68GeSywPdqujYjCYZTXUSyZDZxwBzK9qoMquWY9EbSV8m+YDljyrdlsMl6S+A/wkMigmbB0XQSxpGEvI/ioi1afH/kzQu3T4O+GNaXtL4ORUyC7hU0oskwzn/NfAvwChJXR9Oy29vd1/S7SOBbQPZ4F60Aq0R0TXHwBqS4K/GY/M3wAsR0R4Re4C1JMerWo9Nl74ei8F8jJB0DXAxcFX6iwuqsy/vJDmpeCLNgzrg95JOpAL9qXjQSxLwA+DpiPh23qYGoOuu89Uk1+67yj+e3rmeCezM+9O1oiJiSUTURTLmz3zglxFxFfAr4Iq0WmFfuvp4RVp/0JyRRcQfgJclTUmLLiQZzqLqjg3JJZuZkv4i/Znr6ktVHps8fT0W64GLJI1O/8q5KC2rOElzSS57XhoRb+Zt6mnMrEOOw1VJEfFkRLwj9o8B1kry0MkfqMSxqdSNi7wbDu8i+XNzE/B4+voAyfXQB4DngF8Ax6X1RTLj1fPAk0Cu0n3ooV8XsP+pm1NIfjBbgP8NHJ2WD0/XW9Ltp1S63UX6MQ1oTI/POpKnAary2AD/BDwDPAX8B8lTHFVzbIC7Se4v7CEJjk8dzrEguf7dkr4+MYj60kJyjborB27Lq//ltC/NwPvzyj9A8qTe88CXB9OxKdj+Ivtvxg74sfEQCGZmGVfxSzdmZta/HPRmZhnnoDczyzgHvZlZxjnozcwyzkFvZpZxDnozs4z7/xQNBu15VctMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2276,7 +2277,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlcElEQVR4nO3de5xdVX338c/XIYHBGiaBwSbDJfEhBEFsAiNeqBdQSPRRMiJi6EXACqUWbeXVSFIqUngo2LTl0aepPGARUW6SQogaHGlBtFwzmEguGggBIZMo4RJAGMiFX//Y64Sdk5nJ3smcmTMz3/frdV6z99prr/M7k8vvrLX2XlsRgZmZWVFvGOgAzMxscHHiMDOzUpw4zMysFCcOMzMrxYnDzMxKceIwM7NSnDjM+pCk90paOdBxmNWSE4cNGZIel/ShgYwhIn4WEZNq1b6kqZJ+KulFSesl3SXphFq9n1l3nDjMSpDUMIDvfRJwE3ANsB/wZuB84GM70ZYk+d+/7RT/xbEhT9IbJM2S9KikZyR9T9KY3PGbJP1G0vPp2/xhuWNXS/qGpIWSXgKOST2bv5H0UDrnRkl7pPofkLQmd36PddPxL0laJ2mtpM9KCkkHdfMZBPwLcFFEfDMino+I1yLirog4I9W5QNJ3c+eMT+3tlvZ/IuliSXcDLwMzJXVUvc8XJS1I27tL+idJT0j6raTLJTXu4h+HDQFOHDYcfB5oA94PjAOeA+bmjt8GTAT2BX4OXFt1/h8BFwNvAv47lZ0MTAMmAG8HTuvl/butK2kacA7wIeAg4AO9tDEJ2B+Y10udIv4UOJPss1wOTJI0MXf8j4Dr0valwMHA5BRfC1kPx4Y5Jw4bDs4CzouINRHxKnABcFLlm3hEXBURL+aO/YGkvXLn3xoRd6dv+K+ksq9HxNqIeBb4Ptl/rj3pqe7JwLciYnlEvJzeuyd7p5/rin3kHl2d3m9zRDwP3AqcApASyCHAgtTDORP4YkQ8GxEvAv8AzNjF97chwInDhoMDgVskbZC0AfglsAV4s6QGSZemYawXgMfTOfvkzn+ymzZ/k9t+Gfi9Xt6/p7rjqtru7n0qnkk/x/ZSp4jq97iOlDjIehvzUxJrBvYEHsz93n6Uym2Yc+Kw4eBJ4MMR0ZR77RERnWT/WU4nGy7aCxifzlHu/FotIb2ObJK7Yv9e6q4k+xyf6KXOS2T/2Vf8fjd1qj/L7UCzpMlkCaQyTPU00AUclvud7RURvSVIGyacOGyoGSFpj9xrN7Kx/IslHQggqVnS9FT/TcCrZN/o9yQbjukv3wNOl/RWSXsCX+6pYmTPPzgH+LKk0yWNSpP+fyjpilRtCfA+SQekobbZOwogIjaRXak1BxhDlkiIiNeAK4HLJO0LIKlF0tSd/bA2dDhx2FCzkOybcuV1AfA1YAHwY0kvAvcB70z1rwF+DXQCK9KxfhERtwFfB+4EVuXe+9Ue6s8DPgV8BlgL/Bb4P2TzFETE7cCNwEPAg8APCoZyHVmP66aI2JwrP7cSVxrG+0+ySXob5uQHOZnVB0lvBZYBu1f9B25WV9zjMBtAkj6e7pcYDXwV+L6ThtU7Jw6zgfXnwFPAo2RXev3FwIZjtmMeqjIzs1Lc4zAzs1J2G+gA+sM+++wT48ePH+gwzMwGlQcffPDpiNjups9hkTjGjx9PR0fHjiuamdlWkn7dXbmHqszMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMyslGFxVZWZ2WA0f3Enc9pXsnZDF+OaGpk5dRJtU1oGOiwnDjOzejR/cSezb15K16YtAHRu6GL2zUsBBjx5OHGYmdWhOe0rtyaNiq5NW/jSvIe4/oEnCrVx6LhRfOVjh/V5bJ7jMDOrQ2s3dHVbvnHLa/0cyfZq2uOQNI3sIToNwDcj4tKq45cBx6TdPYF9I6IpPcbyG8AoshVDL46IG9M5VwPvB55P550WEUtq+TnMzPrbuKZGOrtJHi1Njdz45+8egIheV7Meh6QGYC7wYeBQ4BRJh+brRMQXI2JyREwG/h9wczr0MvDpiDgMmAb8X0lNuVNnVs5z0jCzoWjm1Ek0jmjYpqxxRAMzpw78QxhrOVR1FLAqIlZHxEbgBmB6L/VPAa4HiIiHI+KRtL2W7HkF2y20ZWY2VLVNaeGSEw9nZEP233RLUyOXnHj4gE+MQ20TRwvwZG5/TSrbjqQDgQnAHd0cOwoYSfagm4qLJT0k6TJJu/fQ5pmSOiR1rF+/fmc/g5nZgGmb0sKUA5p454Qx3D3r2LpIGlA/k+MzgHkRsc0lBJLGAt8BTo+IyozQbOAQ4B3AGODc7hqMiCsiojUiWpub3VkxM+srtUwcncD+uf39Ull3ZpCGqSokjQJ+CJwXEfdVyiNiXWReBb5FNiRmZmb9pJaJYxEwUdIESSPJksOC6kqSDgFGA/fmykYCtwDXRMS8qvpj008BbcCyWn0AMzPbXs0ux42IzZLOBtrJLse9KiKWS7oQ6IiIShKZAdwQ2z78/GTgfcDekk5LZZXLbq+V1AwIWAKcVavPYGZm26vpfRwRsRBYWFV2ftX+Bd2c913guz20eWwfhmhmZiV5yZGS6nXRMTOz/uLEUUI9LzpmZtZfnDhK6ItFx8zMylix7gUOHTtqoMPYRr3cxzEo1POiY2Y2NB06dhTTJ9fXiIZ7HCXU86JjZmb9xT2OEup50TEzs/7iHkcJlQnwL817iI1bXqPFV1WZ2TDkxFFS25SWrRPhHp4ys+HIQ1VmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooTh5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpNU0ckqZJWilplaRZ3Ry/TNKS9HpY0obcsVMlPZJep+bKj5S0NLX5dUmq5WcwM7Nt1Wx1XEkNwFzgOGANsEjSgohYUakTEV/M1f88MCVtjwG+ArQCATyYzn0O+AZwBnA/sBCYBtxWq89hZmbbqmWP4yhgVUSsjoiNwA3A9F7qnwJcn7anArdHxLMpWdwOTJM0FhgVEfdFRADXAG01+wRmZradWiaOFuDJ3P6aVLYdSQcCE4A7dnBuS9ou0uaZkjokdaxfv36nPoCZmW2vXibHZwDzImJLXzUYEVdERGtEtDY3N/dVs2Zmw14tE0cnsH9uf79U1p0ZvD5M1du5nWm7SJtmZlYDtUwci4CJkiZIGkmWHBZUV5J0CDAauDdX3A4cL2m0pNHA8UB7RKwDXpD0rnQ11aeBW2v4GczMrErNrqqKiM2SziZLAg3AVRGxXNKFQEdEVJLIDOCGNNldOfdZSReRJR+ACyPi2bT9OeBqoJHsaipfUWVm1o9qljgAImIh2SWz+bLzq/Yv6OHcq4CruinvAN7Wd1GamVkZ9TI5bmZmg4QTh5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpNb0B0MzM+sb8xZ3MaV/J2g1djGtqZObUSbRN6XZx8Jpz4jAzq3PzF3cy++aldG3KFhDv3NDF7JuXAgxI8vBQlZlZnZvTvnJr0qjo2rSFOe0rByQeJw4zszq3dkNXqfJa22HikLR3fwRiZmbdG9fUWKq81or0OO6TdJOkj6RnYJiZWT+aOXUSjSMatilrHNHAzKmTBiSeIonjYOAK4E+BRyT9g6SDaxuWmZlVtE1p4ZITD6elqREBLU2NXHLi4fV7VVV6wNLtwO2SjgG+C3xO0i+AWRFxb68NmJnZLmub0jJgiaLaDhNHmuP4E7Iex2+Bz5M9AnYycBMwoYbxmZlZnSlyH8e9wHeAtohYkyvvkHR5bcIyM7N6VSRxTMo/DzwvIr7ax/GYmVmdKzI5/mNJTZUdSaMltdcuJDMzq2dFEkdzRGyo7ETEc8C+RRqXNE3SSkmrJM3qoc7JklZIWi7pulR2jKQludcrktrSsaslPZY7NrlILGZm1jeKDFVtkXRARDwBIOlAoNuhqzxJDcBc4DhgDbBI0oKIWJGrMxGYDRwdEc9J2hcgIu4km3xH0hhgFfDjXPMzI2JegdjNzKyPFUkc5wH/LekuQMB7gTMLnHcUsCoiVgNIugGYDqzI1TkDmJt6MUTEU920cxJwW0S8XOA9zcysxnY4VBURPwKOAG4EbgCOjIgicxwtwJO5/TWpLO9g4GBJd0u6T9K0btqZAVxfVXaxpIckXSZp9wKxmJlZHym6yOEW4CngBeBQSe/ro/ffDZgIfAA4BbiyaiJ+LHA4kE9Us4FDgHcAY4Bzu2tY0pmSOiR1rF+/vo/CNTOzIoscfhb4Kdl/3n+ffl5QoO1OYP/c/n6pLG8NsCAiNkXEY8DDZImk4mTglojYVCmIiHWReRX4FtmQ2HYi4oqIaI2I1ubm5gLhmplZEUV6HH9F9u3+1xFxDDAF2FDgvEXAREkTJI0kG3JaUFVnPllvA0n7kA1drc4dP4WqYarUCyEtuNgGLCsQi5mZ9ZEik+OvRMQrkpC0e0T8StIOl2SMiM2SzibroTQAV0XEckkXAh0RsSAdO17SCrLhsJkR8QyApPFkPZa7qpq+VlIz2UT9EuCsQp/UzMz6RJHEsSbNO8wnW+jwOeDXRRqPiIXAwqqy83PbAZyTXtXnPs72k+lExLFF3tvMzGqjyOq4H0+bF0i6E9gL+FFNozIzs7rVa+JIN/Etj4hDACKietjIzMyGmV4nxyNiC7BS0gH9FI+ZmdW5InMco4Hlkh4AXqoURsQJNYvKzMzqVpHE8eWaR2FmZoNGkclxz2uYmdlWRR4d+yKvr4Y7EhgBvBQRo2oZmJmZ1aciPY43VbbT3drTgXfVMigzM6tfRRc5BLIb9iJiPjC1NuGYmVm9KzJUdWJu9w1AK/BKzSIyM7O6VuSqqo/ltjcDj5MNV5mZ2TBUZI7j9P4IxMzMBociz+P4dtXDlUZLuqqmUZmZ2U6bv7iToy+9gwmzfsjRl97B/MXVj0LaNUWGqt4eERsqOxHxnKQpfRqFmZn1ifmLO5l981K6Nm0BoHNDF7NvXgpA25TtFhzfKUWuqnqDpNGVHUljKJZwzMysn81pX7k1aVR0bdrCnPaVffYeRRLAPwP3Srop7X8SuLjPIjAzsz6zdkNXqfKdUWRy/BpJHUDlAUonRsSKPovAzMz6zLimRjq7SRLjmhr77D2KTI6/C3gyIv41Iv6V7ImA7+yzCMzMrM/MnDqJxhEN25Q1jmhg5tQdPvG7sCJzHN8Afpfb/10qMzOzOtM2pYVLTjyclqZGBLQ0NXLJiYf32cQ4FJvjUHo2OAAR8ZokT46bmdWptiktfZooqhXpcayW9AVJI9Lrr4DVNYvIzMzqWpHEcRbwHqATWAO8EzijSOOSpklaKWmVpFk91DlZ0gpJyyVdlyvfImlJei3IlU+QdH9q80ZJI4vEYmZmfaPIVVVPATMq+5IagY8CN/V4UlavAZgLHEeWcBZJWpC/IkvSRGA2cHS6sXDfXBNdETG5m6a/ClwWETdIuhz4MzznYmbWbwotqy6pQdJHJH0HeAz4VIHTjgJWRcTqiNgI3MD2iyOeAcyNiOdga5LqLQ6RXRY8LxV9G2gr8hnMzKxv9Jo4JL1f0v8nWxH3z8h6D2+JiJMKtN0CPJnbX5PK8g4GDpZ0t6T7JE3LHdtDUkcqb0tlewMbImJzL21WYj8znd+xfv36AuGamVkRPQ5VSVoDPEE2DPQ3EfGipMci4uU+fv+JwAeA/YCfSjo8rY11YER0SnoLcIekpcDzRRuOiCuAKwBaW1tjB9XNzKyg3noc84BxZMNSH5P0Rl5/9ngRncD+uf39UlneGmBBRGyKiMeAh8kSCRHRmX6uBn4CTAGeAZpylwN316aZmdVQj4kjIv4amEC2VtUHgJVAc7oK6vcKtL0ImJiughpJNsG+oKrO/NQ2kvYhG7panZZu3z1XfjSwIt1PcidQGSo7Fbi1QCxmZtZHep3jSM8YvzMiziRLIqeQTXA/vqOG0zzE2UA78EvgexGxXNKFkk5I1dqBZyStIEsIMyPiGeCtQIekX6TyS3NXY50LnCNpFdmcx7+X+sRmZrZLCt8BHhGbgB8AP0iX5BY5ZyGwsKrs/Nx2AOekV77OPcDhPbS5muyKLTMzGwCFLsetFhF9tz6vmZkNKjuVOMzMbPhy4jAzs1J2OMch6WBgJnBgvn5EHNvjSWZmNmQVmRy/CbgcuBLYsoO6Zma2A/MXdzKnfSVrN3QxrqmRmVMn1XQZ9L5WJHFsjggvImhm1gfmL+5k9s1L6dqUfQ/v3NDF7JuXAgya5FFkjuP7kj4naaykMZVXzSMzMxuC5rSv3Jo0Kro2bWFO+8oBiqi8Ij2OU9PPmbmyAN7S9+GYmQ1tazd0fzdDT+X1qMjzOCb0RyBmZsPBuKZGOrtJEuOaCt1XXRd2OFSVHhf7BUnz0utsSSP6Izgzs6Fm5tRJNI5o2KascUQDM6dOGqCIyisyVPUNYATwb2n/T1PZZ2sVlJnZUFWZAB/qV1W9IyL+ILd/R1p80MzMdkLblJZBlSiqFbmqaouk/1XZSQ9W8v0cZmbDVJEex0zgTkmrAZHdQX56TaMyM7O6VeSqqv+SNBGozNysjIhXaxuWmZnVq96eOX5sRNwh6cSqQwdJIiJurnFsZmZWh3rrcbwfuAP4WDfHAnDiMDMbhnpMHBHxlbR5YUQ8lj8myTcFmpkNU0Umx/8DOKKqbB5wZN+HMzwM9pUxzWx4622O4xDgMGCvqnmOUcAetQ5sqBoKK2Oa2fDW230ck4CPAk1k8xyV1xHAGUUalzRN0kpJqyTN6qHOyZJWSFou6bpUNlnSvansIUmfytW/WtJjkpak1+QisdSLobAyppkNb73NcdwK3Crp3RFxb9mGJTUAc4HjgDXAIkkLImJFrs5EYDZwdEQ8J2nfdOhl4NMR8YikccCDktojYkM6PjMi5pWNqR4MhZUxzWx4KzLHsVjSX5INW20dooqIz+zgvKOAVRGxGkDSDcB0YEWuzhnA3Ih4LrX5VPr5cO591kp6CmgGNhSIt64NhZUxzWx4K7LkyHeA3wemAncB+wEvFjivBXgyt78mleUdDBws6W5J90maVt2IpKOAkcCjueKL0xDWZZJ27+7NJZ0pqUNSx/r16wuE2z+GwsqYZja8FUkcB0XEl4GXIuLbwP8G3tlH778bMBH4AHAKcKWkpspBSWPJEtfpEfFaKp4NHAK8AxgDnNtdwxFxRUS0RkRrc3NzH4W769qmtHDJiYfT0tSIgJamRi458XBPjJvZoFFkqGpT+rlB0tuA3wD79lK/ohPYP7e/XyrLWwPcHxGbgMckPUyWSBZJGgX8EDgvIu6rnBAR69Lmq5K+BfxNgVjqymBfGdPMhrciPY4rJI0GvgwsIJuj+McC5y0CJkqaIGkkMCOdnzefrLeBpH3Ihq5Wp/q3ANdUT4KnXgiSBLQBywrEYmZmfaTIIoffTJt3UeI54xGxWdLZQDvQAFwVEcslXQh0RMSCdOx4SSvIlmqfGRHPSPoT4H3A3pJOS02eFhFLgGslNZOt1LsEOKtoTGX4Jj0zs+71dgPgOb2dGBH/sqPGI2IhsLCq7PzcdgDnpFe+zneB7/bQ5rE7et9d5Zv0zMx61luP403p5ySyiejKMNPHgAdqGdRA6+kmvS/Ne4jrH3iCFete4NCxowYoOjOzgdXbDYB/DyDpp8AREfFi2r+AbNJ6yOrpZryNW7ILuw4dO4rpk93zMLPhqchVVW8GNub2N6ayIaunm/Ramhq58c/fPQARmZnVjyJXVV0DPCDpgtTbuB+4upZBDTTfpGdm1rMiV1VdLOk24L2p6PSIWFzbsAZWZQLcV1WZmW2vt6uqRkXEC5LGAI+nV+XYmIh4tvbhDRzfpGdm1r3eehzXkS2r/iDZo2IrlPYL39NhZmZDR29XVX00/fRjYs3MbKvehqqqHxe7jYj4ed+HY2Zm9a63oap/7uVYADW/g9vMzOpPb0NVx/RnIGZmNjgUuQGQtJz6oWz7BMBrahWUmZnVrx0mDklfIVv6/FCyBQs/DPw32Y2BZmY2zBS5c/wk4IPAbyLidOAPgL1qGpWZmdWtIomjKz22dXN6Kt9TbPtkPzMzG0aKzHF0pOeAX0l2M+DvgHtrGZSZmdWv3u7jmAtcFxGfS0WXS/oRMCoiHuqX6MzMrO701uN4GPin9Izv7wHXD/XFDc3MbMd6nOOIiK9FxLuB9wPPAFdJ+pWkr0g6uN8iNDOzurLDyfGI+HVEfDUipgCnAG3AL2sdmJmZ1acdJg5Ju0n6mKRrgduAlcCJRRqXNE3SSkmrJM3qoc7JklZIWi7pulz5qZIeSa9Tc+VHSlqa2vy6JBWJxczM+kZvk+PHkfUwPgI8ANwAnBkRLxVpWFIDMBc4DlgDLJK0ICJW5OpMBGYDR0fEc5L2TeVjgK8ArWTrYj2Yzn0O+AZwBtmTCBcC08gSmpmZ9YPeehyzgXuAt0bECRFxXdGkkRwFrIqI1RGxkSzxTK+qcwYwNyUEIuKpVD4VuD0ink3HbgempYn6URFxX0QE2d3rbSViMjOzXdTbIoe7uvptC/Bkbn8N8M6qOgcDSLobaAAuiIgf9XBuS3qt6aZ8O5LOBM4EOOCAA3b6Q5iZ2baK3DleS7sBE8nWwjoFuDLdbLjLIuKKiGiNiNbm5ua+aNLMzKht4uhk26VJ9ktleWuABRGxKSIeI7t3ZGIv53am7d7aNDOzGqpl4lgETJQ0QdJIYAawoKrOfLLeBpL2IRu6Wg20A8dLGi1pNHA80B4R64AXJL0rXU31aeDWGn4GMzOrUuh5HDsjIjZLOpssCTQAV0XEckkXAh0RsYDXE8QKYAswMyKeAZB0EVnyAbgwIp5N258DrgYaya6m8hVVZmb9SNnFSUNba2trdHR0DHQYZmaDiqQHI6K1unygJ8fNzGyQceIwM7NSnDjMzKwUJw4zMyvFicPMzEpx4jAzs1KcOMzMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMysFCcOMzMrxYnDzMxKceIwM7NSnDjMzKwUJw4zMyvFicPMzEpx4jAzs1KcOMzMrBQnDjMzK6WmiUPSNEkrJa2SNKub46dJWi9pSXp9NpUfkytbIukVSW3p2NWSHssdm1zLz2BmZtvarVYNS2oA5gLHAWuARZIWRMSKqqo3RsTZ+YKIuBOYnNoZA6wCfpyrMjMi5tUqdjMz61ktexxHAasiYnVEbARuAKbvRDsnAbdFxMt9Gp2Zme2UWiaOFuDJ3P6aVFbtE5IekjRP0v7dHJ8BXF9VdnE65zJJu/dRvGZmVsBAT45/HxgfEW8Hbge+nT8oaSxwONCeK54NHAK8AxgDnNtdw5LOlNQhqWP9+vW1iN3MbFiqZeLoBPI9iP1S2VYR8UxEvJp2vwkcWdXGycAtEbEpd866yLwKfItsSGw7EXFFRLRGRGtzc/MufhQzM6uoZeJYBEyUNEHSSLIhpwX5CqlHUXEC8MuqNk6hapiqco4kAW3Asr4N28zMelOzq6oiYrOks8mGmRqAqyJiuaQLgY6IWAB8QdIJwGbgWeC0yvmSxpP1WO6qavpaSc2AgCXAWbX6DGZmtj1FxEDHUHOtra3R0dEx0GGYmQ0qkh6MiNbq8oGeHDczs0HGicPMzEpx4jAzs1KcOMzMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMysFCcOMzMrxYnDzMxKqdlaVcPB/MWdzGlfydoNXYxramTm1Em0TenukSNmZkOHE8dOmr+4k9k3L6Vr0xYAOjd0MfvmpQBOHmY2pHmoaifNaV+5NWlUdG3awpz2lQMUkZlZ/3Di2ElrN3SVKjczGyqcOHbSuKbGUuVmZkOFE8dOmjl1Eo0jGrYpaxzRwMypkwYoIjOz/uHJ8Z1UmQD3VVVmNtw4ceyCtiktThRmNux4qMrMzEpx4jAzs1KcOMzMrBQnDjMzK8WJw8zMSlFEDHQMNSdpPfDrgY6jgH2Apwc6iAIcZ99ynH1vsMRa73EeGBHN1YXDInEMFpI6IqJ1oOPYEcfZtxxn3xsssQ6WOKt5qMrMzEpx4jAzs1KcOOrLFQMdQEGOs285zr43WGIdLHFuw3McZmZWinscZmZWihOHmZmV4sTRTyRNkrQk93pB0l9LGiPpdkmPpJ+jU31J+rqkVZIeknREP8b6RUnLJS2TdL2kPSRNkHR/iudGSSNT3d3T/qp0fHw/xvlXKcblkv46ldXF71PSVZKekrQsV1Y6NkmnpvqPSDq1n+L8ZPqdviaptar+7BTnSklTc+XTUtkqSbP6Kc45kn6Vfme3SGqq0zgvSjEukfRjSeNS+YD9ue+yiPCrn19AA/Ab4EDgH4FZqXwW8NW0/RHgNkDAu4D7+ym2FuAxoDHtfw84Lf2ckcouB/4ibX8OuDxtzwBu7Kc43wYsA/YkezzAfwIH1cvvE3gfcASwLFdWKjZgDLA6/Rydtkf3Q5xvBSYBPwFac+WHAr8AdgcmAI+mv8sNafstwMhU59B+iPN4YLe0/dXc77Pe4hyV2/5C7t/LgP257+rLPY6B8UHg0Yj4NTAd+HYq/zbQlranA9dE5j6gSdLYfopvN6BR0m5k/zGvA44F5vUQZyX+ecAHJakfYnwr2T+0lyNiM3AXcCJ18vuMiJ8Cz1YVl41tKnB7RDwbEc8BtwPTah1nRPwyIlZ2U306cENEvBoRjwGrgKPSa1VErI6IjcANqW6t4/xx+rMHuA/Yr07jfCG3+0agckXSgP257yonjoExA7g+bb85Ital7d8Ab07bLcCTuXPWpLKaiohO4J+AJ8gSxvPAg8CG3D/SfCxb40zHnwf2rnWcZL2N90raW9KeZN/e9qfOfp9VysZWDzHn1XOcnyH79k4v8QxYnJIulvQk8MfA+fUaZ1FOHP0szQ2cANxUfSyyfuqAXh+dxt2nk3Xxx5F9Q6qrbzuQfSsmG574MfAjYAmwparOgP8+e1LPsQ02ks4DNgPXDnQsPYmI8yJif7IYzx7oeHaVE0f/+zDw84j4bdr/bWXIJP18KpV3kn2DrtgvldXah4DHImJ9RGwCbgaOJutGVx41nI9la5zp+F7AM/0QJxHx7xFxZES8D3gOeJj6+33mlY2tHmLOq7s4JZ0GfBT445SM6SWeevh9Xgt8Im3Xc5y9cuLof6fw+jAVwAKgctXEqcCtufJPpysv3gU8nxvmqKUngHdJ2jPNVXwQWAHcCZzUQ5yV+E8C7sj9A64pSfumnweQzW9cR/39PvPKxtYOHC9pdOoJHp/KBsoCYIayK+kmABOBB4BFwERlV96NJBuKXVDrYCRNA74EnBARL9dxnBNzu9OBX+XiHAx/7tsb6Nn54fQiG/Z5BtgrV7Y38F/AI2RXBo1J5QLmkl0FspTc1S39EOffk/3lXgZ8h+zqlLeQ/eNbRTbMtnuqu0faX5WOv6Uf4/wZWVL7BfDBevp9kn05WAdsIhuj/rOdiY1s7H5Vep3eT3F+PG2/CvwWaM/VPy/FuRL4cK78I2Q9vkeB8/opzlVkcwFL0uvyOo3zP9K/pYeA7wMtA/3nvqsvLzliZmaleKjKzMxKceIwM7NSnDjMzKwUJw4zMyvFicPMzEpx4rBBT9JlSqvjpv12Sd/M7f+zpHN6Of9qSSel7Z9UrwibykdIujStVvpzSfdK+nA69rikfXYi7q3v28PxuWlF1RWSuvT6ysonSVqYXw22r0gaK+kHvRwfKemnuZtBbRhy4rCh4G7gPQCS3gDsAxyWO/4e4J5dfI+LgLHA2yLiCLIFCt+0i232KiL+MiImk9178GhETE6veRHxkYjYUIO3PQe4speYNpLdi/KpGry3DRJOHDYU3AO8O20fRnaz1YvpztvdyVbS/bmk8yUtUvYMjyuKruKbFlE8A/h8RLwKEBG/jYjvdVP3nNT+sqpe0KfTMxd+Iek73Zx3UeqBNBSM6XFJ+0gar+yZFFdLeljStZI+JOnu1Ds6KtV/o7JnRTwgabGknlaF/QTZ2l9IOizVX5Jir9wBPZ9ssT4bptzdtEEvItZK2pyWHnkPcC/ZaqLvJlutd2lEbJT0rxFxIUD6z/ujZHfy7shBwBOx7fLY25F0JHA68E6yu4Lvl3QXsBH4O+A9EfG0pDFV580h672cHjt3R+5BwCfJ7jZeBPwR8Idki2n+LVnv6Dyy5WA+k4a4HpD0nxHxUi6OCcBzleQInAV8LSKuTUt0VJLaMuAdOxGnDRHucdhQcQ9Z0qgkjntz+3enOscoe0rhUrLnixzWXUO74A+BWyLipYj4HdkCke9N73VTRDwNEBH55zV8mWwJmrN2MmlAtijl0oh4DVgO/FdqaykwPtU5HpglaQnZA5r2AA6oamcssD63fy/wt5LOBQ6MiK4U/xZgo6SaDtVZ/XLisKGiMs9xONk34vvIehzvAe6RtAfwb8BJEXE42Tj+HgXbXgUcIGlUn0ed9RCOrO6FlPRqbvu13P5rvD6qIOATuXmSAyJbmj6vi9zvJCKuI+u1dAELJR2bq7s78MouxGyDmBOHDRX3kA09PRsRW9K3+iay5HEPr/+H+LSk3+P1lX53KLKVV/8d+Jpef9Z6s6RPVlX9GdCmbGXhN5ItFvgz4A7gk5L2Tufmk8SPgEuBH9b4G3w78PnKvI6kKd3UeZjXeyhIeguwOiK+TraS79tT+d7A05Etu2/DkBOHDRVLya6muq+q7PmIeDpdgXQlWW+kneybfhl/RzaMs0LSMuAHwDZzHhHxc+BqslWC7we+GRGLI2I5cDFwl6RfAP9Sdd5NKbYFkhpLxlXURcAI4CFJy9P+NtJ8x6OSDkpFJwPL0vDW24BrUvkxwA9rFKcNAl4d18y2kvRx4MiI+Lte6twMzIqIh/svMqsnvqrKzLaKiFsqQ2rdSUN18500hjf3OMzMrBTPcZiZWSlOHGZmVooTh5mZleLEYWZmpThxmJlZKf8DKMTcjGm+IEYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlcElEQVR4nO3de5xdVX338c/XIYHBGiaBwSbDJfEhBEFsAiNeqBdQSPRRMiJi6EXACqUWbeXVSFIqUngo2LTl0aepPGARUW6SQogaHGlBtFwzmEguGggBIZMo4RJAGMiFX//Y64Sdk5nJ3smcmTMz3/frdV6z99prr/M7k8vvrLX2XlsRgZmZWVFvGOgAzMxscHHiMDOzUpw4zMysFCcOMzMrxYnDzMxKceIwM7NSnDjM+pCk90paOdBxmNWSE4cNGZIel/ShgYwhIn4WEZNq1b6kqZJ+KulFSesl3SXphFq9n1l3nDjMSpDUMIDvfRJwE3ANsB/wZuB84GM70ZYk+d+/7RT/xbEhT9IbJM2S9KikZyR9T9KY3PGbJP1G0vPp2/xhuWNXS/qGpIWSXgKOST2bv5H0UDrnRkl7pPofkLQmd36PddPxL0laJ2mtpM9KCkkHdfMZBPwLcFFEfDMino+I1yLirog4I9W5QNJ3c+eMT+3tlvZ/IuliSXcDLwMzJXVUvc8XJS1I27tL+idJT0j6raTLJTXu4h+HDQFOHDYcfB5oA94PjAOeA+bmjt8GTAT2BX4OXFt1/h8BFwNvAv47lZ0MTAMmAG8HTuvl/butK2kacA7wIeAg4AO9tDEJ2B+Y10udIv4UOJPss1wOTJI0MXf8j4Dr0valwMHA5BRfC1kPx4Y5Jw4bDs4CzouINRHxKnABcFLlm3hEXBURL+aO/YGkvXLn3xoRd6dv+K+ksq9HxNqIeBb4Ptl/rj3pqe7JwLciYnlEvJzeuyd7p5/rin3kHl2d3m9zRDwP3AqcApASyCHAgtTDORP4YkQ8GxEvAv8AzNjF97chwInDhoMDgVskbZC0AfglsAV4s6QGSZemYawXgMfTOfvkzn+ymzZ/k9t+Gfi9Xt6/p7rjqtru7n0qnkk/x/ZSp4jq97iOlDjIehvzUxJrBvYEHsz93n6Uym2Yc+Kw4eBJ4MMR0ZR77RERnWT/WU4nGy7aCxifzlHu/FotIb2ObJK7Yv9e6q4k+xyf6KXOS2T/2Vf8fjd1qj/L7UCzpMlkCaQyTPU00AUclvud7RURvSVIGyacOGyoGSFpj9xrN7Kx/IslHQggqVnS9FT/TcCrZN/o9yQbjukv3wNOl/RWSXsCX+6pYmTPPzgH+LKk0yWNSpP+fyjpilRtCfA+SQekobbZOwogIjaRXak1BxhDlkiIiNeAK4HLJO0LIKlF0tSd/bA2dDhx2FCzkOybcuV1AfA1YAHwY0kvAvcB70z1rwF+DXQCK9KxfhERtwFfB+4EVuXe+9Ue6s8DPgV8BlgL/Bb4P2TzFETE7cCNwEPAg8APCoZyHVmP66aI2JwrP7cSVxrG+0+ySXob5uQHOZnVB0lvBZYBu1f9B25WV9zjMBtAkj6e7pcYDXwV+L6ThtU7Jw6zgfXnwFPAo2RXev3FwIZjtmMeqjIzs1Lc4zAzs1J2G+gA+sM+++wT48ePH+gwzMwGlQcffPDpiNjups9hkTjGjx9PR0fHjiuamdlWkn7dXbmHqszMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMyslGFxVZWZ2WA0f3Enc9pXsnZDF+OaGpk5dRJtU1oGOiwnDjOzejR/cSezb15K16YtAHRu6GL2zUsBBjx5OHGYmdWhOe0rtyaNiq5NW/jSvIe4/oEnCrVx6LhRfOVjh/V5bJ7jMDOrQ2s3dHVbvnHLa/0cyfZq2uOQNI3sIToNwDcj4tKq45cBx6TdPYF9I6IpPcbyG8AoshVDL46IG9M5VwPvB55P550WEUtq+TnMzPrbuKZGOrtJHi1Njdz45+8egIheV7Meh6QGYC7wYeBQ4BRJh+brRMQXI2JyREwG/h9wczr0MvDpiDgMmAb8X0lNuVNnVs5z0jCzoWjm1Ek0jmjYpqxxRAMzpw78QxhrOVR1FLAqIlZHxEbgBmB6L/VPAa4HiIiHI+KRtL2W7HkF2y20ZWY2VLVNaeGSEw9nZEP233RLUyOXnHj4gE+MQ20TRwvwZG5/TSrbjqQDgQnAHd0cOwoYSfagm4qLJT0k6TJJu/fQ5pmSOiR1rF+/fmc/g5nZgGmb0sKUA5p454Qx3D3r2LpIGlA/k+MzgHkRsc0lBJLGAt8BTo+IyozQbOAQ4B3AGODc7hqMiCsiojUiWpub3VkxM+srtUwcncD+uf39Ull3ZpCGqSokjQJ+CJwXEfdVyiNiXWReBb5FNiRmZmb9pJaJYxEwUdIESSPJksOC6kqSDgFGA/fmykYCtwDXRMS8qvpj008BbcCyWn0AMzPbXs0ux42IzZLOBtrJLse9KiKWS7oQ6IiIShKZAdwQ2z78/GTgfcDekk5LZZXLbq+V1AwIWAKcVavPYGZm26vpfRwRsRBYWFV2ftX+Bd2c913guz20eWwfhmhmZiV5yZGS6nXRMTOz/uLEUUI9LzpmZtZfnDhK6ItFx8zMylix7gUOHTtqoMPYRr3cxzEo1POiY2Y2NB06dhTTJ9fXiIZ7HCXU86JjZmb9xT2OEup50TEzs/7iHkcJlQnwL817iI1bXqPFV1WZ2TDkxFFS25SWrRPhHp4ys+HIQ1VmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooTh5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpNU0ckqZJWilplaRZ3Ry/TNKS9HpY0obcsVMlPZJep+bKj5S0NLX5dUmq5WcwM7Nt1Wx1XEkNwFzgOGANsEjSgohYUakTEV/M1f88MCVtjwG+ArQCATyYzn0O+AZwBnA/sBCYBtxWq89hZmbbqmWP4yhgVUSsjoiNwA3A9F7qnwJcn7anArdHxLMpWdwOTJM0FhgVEfdFRADXAG01+wRmZradWiaOFuDJ3P6aVLYdSQcCE4A7dnBuS9ou0uaZkjokdaxfv36nPoCZmW2vXibHZwDzImJLXzUYEVdERGtEtDY3N/dVs2Zmw14tE0cnsH9uf79U1p0ZvD5M1du5nWm7SJtmZlYDtUwci4CJkiZIGkmWHBZUV5J0CDAauDdX3A4cL2m0pNHA8UB7RKwDXpD0rnQ11aeBW2v4GczMrErNrqqKiM2SziZLAg3AVRGxXNKFQEdEVJLIDOCGNNldOfdZSReRJR+ACyPi2bT9OeBqoJHsaipfUWVm1o9qljgAImIh2SWz+bLzq/Yv6OHcq4CruinvAN7Wd1GamVkZ9TI5bmZmg4QTh5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpNb0B0MzM+sb8xZ3MaV/J2g1djGtqZObUSbRN6XZx8Jpz4jAzq3PzF3cy++aldG3KFhDv3NDF7JuXAgxI8vBQlZlZnZvTvnJr0qjo2rSFOe0rByQeJw4zszq3dkNXqfJa22HikLR3fwRiZmbdG9fUWKq81or0OO6TdJOkj6RnYJiZWT+aOXUSjSMatilrHNHAzKmTBiSeIonjYOAK4E+BRyT9g6SDaxuWmZlVtE1p4ZITD6elqREBLU2NXHLi4fV7VVV6wNLtwO2SjgG+C3xO0i+AWRFxb68NmJnZLmub0jJgiaLaDhNHmuP4E7Iex2+Bz5M9AnYycBMwoYbxmZlZnSlyH8e9wHeAtohYkyvvkHR5bcIyM7N6VSRxTMo/DzwvIr7ax/GYmVmdKzI5/mNJTZUdSaMltdcuJDMzq2dFEkdzRGyo7ETEc8C+RRqXNE3SSkmrJM3qoc7JklZIWi7pulR2jKQludcrktrSsaslPZY7NrlILGZm1jeKDFVtkXRARDwBIOlAoNuhqzxJDcBc4DhgDbBI0oKIWJGrMxGYDRwdEc9J2hcgIu4km3xH0hhgFfDjXPMzI2JegdjNzKyPFUkc5wH/LekuQMB7gTMLnHcUsCoiVgNIugGYDqzI1TkDmJt6MUTEU920cxJwW0S8XOA9zcysxnY4VBURPwKOAG4EbgCOjIgicxwtwJO5/TWpLO9g4GBJd0u6T9K0btqZAVxfVXaxpIckXSZp9wKxmJlZHym6yOEW4CngBeBQSe/ro/ffDZgIfAA4BbiyaiJ+LHA4kE9Us4FDgHcAY4Bzu2tY0pmSOiR1rF+/vo/CNTOzIoscfhb4Kdl/3n+ffl5QoO1OYP/c/n6pLG8NsCAiNkXEY8DDZImk4mTglojYVCmIiHWReRX4FtmQ2HYi4oqIaI2I1ubm5gLhmplZEUV6HH9F9u3+1xFxDDAF2FDgvEXAREkTJI0kG3JaUFVnPllvA0n7kA1drc4dP4WqYarUCyEtuNgGLCsQi5mZ9ZEik+OvRMQrkpC0e0T8StIOl2SMiM2SzibroTQAV0XEckkXAh0RsSAdO17SCrLhsJkR8QyApPFkPZa7qpq+VlIz2UT9EuCsQp/UzMz6RJHEsSbNO8wnW+jwOeDXRRqPiIXAwqqy83PbAZyTXtXnPs72k+lExLFF3tvMzGqjyOq4H0+bF0i6E9gL+FFNozIzs7rVa+JIN/Etj4hDACKietjIzMyGmV4nxyNiC7BS0gH9FI+ZmdW5InMco4Hlkh4AXqoURsQJNYvKzMzqVpHE8eWaR2FmZoNGkclxz2uYmdlWRR4d+yKvr4Y7EhgBvBQRo2oZmJmZ1aciPY43VbbT3drTgXfVMigzM6tfRRc5BLIb9iJiPjC1NuGYmVm9KzJUdWJu9w1AK/BKzSIyM7O6VuSqqo/ltjcDj5MNV5mZ2TBUZI7j9P4IxMzMBociz+P4dtXDlUZLuqqmUZmZ2U6bv7iToy+9gwmzfsjRl97B/MXVj0LaNUWGqt4eERsqOxHxnKQpfRqFmZn1ifmLO5l981K6Nm0BoHNDF7NvXgpA25TtFhzfKUWuqnqDpNGVHUljKJZwzMysn81pX7k1aVR0bdrCnPaVffYeRRLAPwP3Srop7X8SuLjPIjAzsz6zdkNXqfKdUWRy/BpJHUDlAUonRsSKPovAzMz6zLimRjq7SRLjmhr77D2KTI6/C3gyIv41Iv6V7ImA7+yzCMzMrM/MnDqJxhEN25Q1jmhg5tQdPvG7sCJzHN8Afpfb/10qMzOzOtM2pYVLTjyclqZGBLQ0NXLJiYf32cQ4FJvjUHo2OAAR8ZokT46bmdWptiktfZooqhXpcayW9AVJI9Lrr4DVNYvIzMzqWpHEcRbwHqATWAO8EzijSOOSpklaKWmVpFk91DlZ0gpJyyVdlyvfImlJei3IlU+QdH9q80ZJI4vEYmZmfaPIVVVPATMq+5IagY8CN/V4UlavAZgLHEeWcBZJWpC/IkvSRGA2cHS6sXDfXBNdETG5m6a/ClwWETdIuhz4MzznYmbWbwotqy6pQdJHJH0HeAz4VIHTjgJWRcTqiNgI3MD2iyOeAcyNiOdga5LqLQ6RXRY8LxV9G2gr8hnMzKxv9Jo4JL1f0v8nWxH3z8h6D2+JiJMKtN0CPJnbX5PK8g4GDpZ0t6T7JE3LHdtDUkcqb0tlewMbImJzL21WYj8znd+xfv36AuGamVkRPQ5VSVoDPEE2DPQ3EfGipMci4uU+fv+JwAeA/YCfSjo8rY11YER0SnoLcIekpcDzRRuOiCuAKwBaW1tjB9XNzKyg3noc84BxZMNSH5P0Rl5/9ngRncD+uf39UlneGmBBRGyKiMeAh8kSCRHRmX6uBn4CTAGeAZpylwN316aZmdVQj4kjIv4amEC2VtUHgJVAc7oK6vcKtL0ImJiughpJNsG+oKrO/NQ2kvYhG7panZZu3z1XfjSwIt1PcidQGSo7Fbi1QCxmZtZHep3jSM8YvzMiziRLIqeQTXA/vqOG0zzE2UA78EvgexGxXNKFkk5I1dqBZyStIEsIMyPiGeCtQIekX6TyS3NXY50LnCNpFdmcx7+X+sRmZrZLCt8BHhGbgB8AP0iX5BY5ZyGwsKrs/Nx2AOekV77OPcDhPbS5muyKLTMzGwCFLsetFhF9tz6vmZkNKjuVOMzMbPhy4jAzs1J2OMch6WBgJnBgvn5EHNvjSWZmNmQVmRy/CbgcuBLYsoO6Zma2A/MXdzKnfSVrN3QxrqmRmVMn1XQZ9L5WJHFsjggvImhm1gfmL+5k9s1L6dqUfQ/v3NDF7JuXAgya5FFkjuP7kj4naaykMZVXzSMzMxuC5rSv3Jo0Kro2bWFO+8oBiqi8Ij2OU9PPmbmyAN7S9+GYmQ1tazd0fzdDT+X1qMjzOCb0RyBmZsPBuKZGOrtJEuOaCt1XXRd2OFSVHhf7BUnz0utsSSP6Izgzs6Fm5tRJNI5o2KascUQDM6dOGqCIyisyVPUNYATwb2n/T1PZZ2sVlJnZUFWZAB/qV1W9IyL+ILd/R1p80MzMdkLblJZBlSiqFbmqaouk/1XZSQ9W8v0cZmbDVJEex0zgTkmrAZHdQX56TaMyM7O6VeSqqv+SNBGozNysjIhXaxuWmZnVq96eOX5sRNwh6cSqQwdJIiJurnFsZmZWh3rrcbwfuAP4WDfHAnDiMDMbhnpMHBHxlbR5YUQ8lj8myTcFmpkNU0Umx/8DOKKqbB5wZN+HMzwM9pUxzWx4622O4xDgMGCvqnmOUcAetQ5sqBoKK2Oa2fDW230ck4CPAk1k8xyV1xHAGUUalzRN0kpJqyTN6qHOyZJWSFou6bpUNlnSvansIUmfytW/WtJjkpak1+QisdSLobAyppkNb73NcdwK3Crp3RFxb9mGJTUAc4HjgDXAIkkLImJFrs5EYDZwdEQ8J2nfdOhl4NMR8YikccCDktojYkM6PjMi5pWNqR4MhZUxzWx4KzLHsVjSX5INW20dooqIz+zgvKOAVRGxGkDSDcB0YEWuzhnA3Ih4LrX5VPr5cO591kp6CmgGNhSIt64NhZUxzWx4K7LkyHeA3wemAncB+wEvFjivBXgyt78mleUdDBws6W5J90maVt2IpKOAkcCjueKL0xDWZZJ27+7NJZ0pqUNSx/r16wuE2z+GwsqYZja8FUkcB0XEl4GXIuLbwP8G3tlH778bMBH4AHAKcKWkpspBSWPJEtfpEfFaKp4NHAK8AxgDnNtdwxFxRUS0RkRrc3NzH4W769qmtHDJiYfT0tSIgJamRi458XBPjJvZoFFkqGpT+rlB0tuA3wD79lK/ohPYP7e/XyrLWwPcHxGbgMckPUyWSBZJGgX8EDgvIu6rnBAR69Lmq5K+BfxNgVjqymBfGdPMhrciPY4rJI0GvgwsIJuj+McC5y0CJkqaIGkkMCOdnzefrLeBpH3Ihq5Wp/q3ANdUT4KnXgiSBLQBywrEYmZmfaTIIoffTJt3UeI54xGxWdLZQDvQAFwVEcslXQh0RMSCdOx4SSvIlmqfGRHPSPoT4H3A3pJOS02eFhFLgGslNZOt1LsEOKtoTGX4Jj0zs+71dgPgOb2dGBH/sqPGI2IhsLCq7PzcdgDnpFe+zneB7/bQ5rE7et9d5Zv0zMx61luP403p5ySyiejKMNPHgAdqGdRA6+kmvS/Ne4jrH3iCFete4NCxowYoOjOzgdXbDYB/DyDpp8AREfFi2r+AbNJ6yOrpZryNW7ILuw4dO4rpk93zMLPhqchVVW8GNub2N6ayIaunm/Ramhq58c/fPQARmZnVjyJXVV0DPCDpgtTbuB+4upZBDTTfpGdm1rMiV1VdLOk24L2p6PSIWFzbsAZWZQLcV1WZmW2vt6uqRkXEC5LGAI+nV+XYmIh4tvbhDRzfpGdm1r3eehzXkS2r/iDZo2IrlPYL39NhZmZDR29XVX00/fRjYs3MbKvehqqqHxe7jYj4ed+HY2Zm9a63oap/7uVYADW/g9vMzOpPb0NVx/RnIGZmNjgUuQGQtJz6oWz7BMBrahWUmZnVrx0mDklfIVv6/FCyBQs/DPw32Y2BZmY2zBS5c/wk4IPAbyLidOAPgL1qGpWZmdWtIomjKz22dXN6Kt9TbPtkPzMzG0aKzHF0pOeAX0l2M+DvgHtrGZSZmdWv3u7jmAtcFxGfS0WXS/oRMCoiHuqX6MzMrO701uN4GPin9Izv7wHXD/XFDc3MbMd6nOOIiK9FxLuB9wPPAFdJ+pWkr0g6uN8iNDOzurLDyfGI+HVEfDUipgCnAG3AL2sdmJmZ1acdJg5Ju0n6mKRrgduAlcCJRRqXNE3SSkmrJM3qoc7JklZIWi7pulz5qZIeSa9Tc+VHSlqa2vy6JBWJxczM+kZvk+PHkfUwPgI8ANwAnBkRLxVpWFIDMBc4DlgDLJK0ICJW5OpMBGYDR0fEc5L2TeVjgK8ArWTrYj2Yzn0O+AZwBtmTCBcC08gSmpmZ9YPeehyzgXuAt0bECRFxXdGkkRwFrIqI1RGxkSzxTK+qcwYwNyUEIuKpVD4VuD0ink3HbgempYn6URFxX0QE2d3rbSViMjOzXdTbIoe7uvptC/Bkbn8N8M6qOgcDSLobaAAuiIgf9XBuS3qt6aZ8O5LOBM4EOOCAA3b6Q5iZ2baK3DleS7sBE8nWwjoFuDLdbLjLIuKKiGiNiNbm5ua+aNLMzKht4uhk26VJ9ktleWuABRGxKSIeI7t3ZGIv53am7d7aNDOzGqpl4lgETJQ0QdJIYAawoKrOfLLeBpL2IRu6Wg20A8dLGi1pNHA80B4R64AXJL0rXU31aeDWGn4GMzOrUuh5HDsjIjZLOpssCTQAV0XEckkXAh0RsYDXE8QKYAswMyKeAZB0EVnyAbgwIp5N258DrgYaya6m8hVVZmb9SNnFSUNba2trdHR0DHQYZmaDiqQHI6K1unygJ8fNzGyQceIwM7NSnDjMzKwUJw4zMyvFicPMzEpx4jAzs1KcOMzMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMysFCcOMzMrxYnDzMxKceIwM7NSnDjMzKwUJw4zMyvFicPMzEpx4jAzs1KcOMzMrBQnDjMzK6WmiUPSNEkrJa2SNKub46dJWi9pSXp9NpUfkytbIukVSW3p2NWSHssdm1zLz2BmZtvarVYNS2oA5gLHAWuARZIWRMSKqqo3RsTZ+YKIuBOYnNoZA6wCfpyrMjMi5tUqdjMz61ktexxHAasiYnVEbARuAKbvRDsnAbdFxMt9Gp2Zme2UWiaOFuDJ3P6aVFbtE5IekjRP0v7dHJ8BXF9VdnE65zJJu/dRvGZmVsBAT45/HxgfEW8Hbge+nT8oaSxwONCeK54NHAK8AxgDnNtdw5LOlNQhqWP9+vW1iN3MbFiqZeLoBPI9iP1S2VYR8UxEvJp2vwkcWdXGycAtEbEpd866yLwKfItsSGw7EXFFRLRGRGtzc/MufhQzM6uoZeJYBEyUNEHSSLIhpwX5CqlHUXEC8MuqNk6hapiqco4kAW3Asr4N28zMelOzq6oiYrOks8mGmRqAqyJiuaQLgY6IWAB8QdIJwGbgWeC0yvmSxpP1WO6qavpaSc2AgCXAWbX6DGZmtj1FxEDHUHOtra3R0dEx0GGYmQ0qkh6MiNbq8oGeHDczs0HGicPMzEpx4jAzs1KcOMzMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMysFCcOMzMrxYnDzMxKqdlaVcPB/MWdzGlfydoNXYxramTm1Em0TenukSNmZkOHE8dOmr+4k9k3L6Vr0xYAOjd0MfvmpQBOHmY2pHmoaifNaV+5NWlUdG3awpz2lQMUkZlZ/3Di2ElrN3SVKjczGyqcOHbSuKbGUuVmZkOFE8dOmjl1Eo0jGrYpaxzRwMypkwYoIjOz/uHJ8Z1UmQD3VVVmNtw4ceyCtiktThRmNux4qMrMzEpx4jAzs1KcOMzMrBQnDjMzK8WJw8zMSlFEDHQMNSdpPfDrgY6jgH2Apwc6iAIcZ99ynH1vsMRa73EeGBHN1YXDInEMFpI6IqJ1oOPYEcfZtxxn3xsssQ6WOKt5qMrMzEpx4jAzs1KcOOrLFQMdQEGOs285zr43WGIdLHFuw3McZmZWinscZmZWihOHmZmV4sTRTyRNkrQk93pB0l9LGiPpdkmPpJ+jU31J+rqkVZIeknREP8b6RUnLJS2TdL2kPSRNkHR/iudGSSNT3d3T/qp0fHw/xvlXKcblkv46ldXF71PSVZKekrQsV1Y6NkmnpvqPSDq1n+L8ZPqdviaptar+7BTnSklTc+XTUtkqSbP6Kc45kn6Vfme3SGqq0zgvSjEukfRjSeNS+YD9ue+yiPCrn19AA/Ab4EDgH4FZqXwW8NW0/RHgNkDAu4D7+ym2FuAxoDHtfw84Lf2ckcouB/4ibX8OuDxtzwBu7Kc43wYsA/YkezzAfwIH1cvvE3gfcASwLFdWKjZgDLA6/Rydtkf3Q5xvBSYBPwFac+WHAr8AdgcmAI+mv8sNafstwMhU59B+iPN4YLe0/dXc77Pe4hyV2/5C7t/LgP257+rLPY6B8UHg0Yj4NTAd+HYq/zbQlranA9dE5j6gSdLYfopvN6BR0m5k/zGvA44F5vUQZyX+ecAHJakfYnwr2T+0lyNiM3AXcCJ18vuMiJ8Cz1YVl41tKnB7RDwbEc8BtwPTah1nRPwyIlZ2U306cENEvBoRjwGrgKPSa1VErI6IjcANqW6t4/xx+rMHuA/Yr07jfCG3+0agckXSgP257yonjoExA7g+bb85Ital7d8Ab07bLcCTuXPWpLKaiohO4J+AJ8gSxvPAg8CG3D/SfCxb40zHnwf2rnWcZL2N90raW9KeZN/e9qfOfp9VysZWDzHn1XOcnyH79k4v8QxYnJIulvQk8MfA+fUaZ1FOHP0szQ2cANxUfSyyfuqAXh+dxt2nk3Xxx5F9Q6qrbzuQfSsmG574MfAjYAmwparOgP8+e1LPsQ02ks4DNgPXDnQsPYmI8yJif7IYzx7oeHaVE0f/+zDw84j4bdr/bWXIJP18KpV3kn2DrtgvldXah4DHImJ9RGwCbgaOJutGVx41nI9la5zp+F7AM/0QJxHx7xFxZES8D3gOeJj6+33mlY2tHmLOq7s4JZ0GfBT445SM6SWeevh9Xgt8Im3Xc5y9cuLof6fw+jAVwAKgctXEqcCtufJPpysv3gU8nxvmqKUngHdJ2jPNVXwQWAHcCZzUQ5yV+E8C7sj9A64pSfumnweQzW9cR/39PvPKxtYOHC9pdOoJHp/KBsoCYIayK+kmABOBB4BFwERlV96NJBuKXVDrYCRNA74EnBARL9dxnBNzu9OBX+XiHAx/7tsb6Nn54fQiG/Z5BtgrV7Y38F/AI2RXBo1J5QLmkl0FspTc1S39EOffk/3lXgZ8h+zqlLeQ/eNbRTbMtnuqu0faX5WOv6Uf4/wZWVL7BfDBevp9kn05WAdsIhuj/rOdiY1s7H5Vep3eT3F+PG2/CvwWaM/VPy/FuRL4cK78I2Q9vkeB8/opzlVkcwFL0uvyOo3zP9K/pYeA7wMtA/3nvqsvLzliZmaleKjKzMxKceIwM7NSnDjMzKwUJw4zMyvFicPMzEpx4rBBT9JlSqvjpv12Sd/M7f+zpHN6Of9qSSel7Z9UrwibykdIujStVvpzSfdK+nA69rikfXYi7q3v28PxuWlF1RWSuvT6ysonSVqYXw22r0gaK+kHvRwfKemnuZtBbRhy4rCh4G7gPQCS3gDsAxyWO/4e4J5dfI+LgLHA2yLiCLIFCt+0i232KiL+MiImk9178GhETE6veRHxkYjYUIO3PQe4speYNpLdi/KpGry3DRJOHDYU3AO8O20fRnaz1YvpztvdyVbS/bmk8yUtUvYMjyuKruKbFlE8A/h8RLwKEBG/jYjvdVP3nNT+sqpe0KfTMxd+Iek73Zx3UeqBNBSM6XFJ+0gar+yZFFdLeljStZI+JOnu1Ds6KtV/o7JnRTwgabGknlaF/QTZ2l9IOizVX5Jir9wBPZ9ssT4bptzdtEEvItZK2pyWHnkPcC/ZaqLvJlutd2lEbJT0rxFxIUD6z/ujZHfy7shBwBOx7fLY25F0JHA68E6yu4Lvl3QXsBH4O+A9EfG0pDFV580h672cHjt3R+5BwCfJ7jZeBPwR8Idki2n+LVnv6Dyy5WA+k4a4HpD0nxHxUi6OCcBzleQInAV8LSKuTUt0VJLaMuAdOxGnDRHucdhQcQ9Z0qgkjntz+3enOscoe0rhUrLnixzWXUO74A+BWyLipYj4HdkCke9N73VTRDwNEBH55zV8mWwJmrN2MmlAtijl0oh4DVgO/FdqaykwPtU5HpglaQnZA5r2AA6oamcssD63fy/wt5LOBQ6MiK4U/xZgo6SaDtVZ/XLisKGiMs9xONk34vvIehzvAe6RtAfwb8BJEXE42Tj+HgXbXgUcIGlUn0ed9RCOrO6FlPRqbvu13P5rvD6qIOATuXmSAyJbmj6vi9zvJCKuI+u1dAELJR2bq7s78MouxGyDmBOHDRX3kA09PRsRW9K3+iay5HEPr/+H+LSk3+P1lX53KLKVV/8d+Jpef9Z6s6RPVlX9GdCmbGXhN5ItFvgz4A7gk5L2Tufmk8SPgEuBH9b4G3w78PnKvI6kKd3UeZjXeyhIeguwOiK+TraS79tT+d7A05Etu2/DkBOHDRVLya6muq+q7PmIeDpdgXQlWW+kneybfhl/RzaMs0LSMuAHwDZzHhHxc+BqslWC7we+GRGLI2I5cDFwl6RfAP9Sdd5NKbYFkhpLxlXURcAI4CFJy9P+NtJ8x6OSDkpFJwPL0vDW24BrUvkxwA9rFKcNAl4d18y2kvRx4MiI+Lte6twMzIqIh/svMqsnvqrKzLaKiFsqQ2rdSUN18500hjf3OMzMrBTPcZiZWSlOHGZmVooTh5mZleLEYWZmpThxmJlZKf8DKMTcjGm+IEYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2614,7 +2615,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAewklEQVR4nO3de5hcVZ3u8e9LbjSXEJSWITcSJUYTL4QUOFHgiKMnQUeIEJCLR6PPiJqDz1EfMiaiDoKeQTEqDIwSGWUcRQwMIioSvIKHm+mEkNAw0RAj6Q6jAYwQaMntd/7Yq6FSqerU7vROVXe/n+epJ7XXXnvXWqnufmvtvWttRQRmZmb12q/RDTAzs/7FwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDrA9JOkHSmka3w6xIDg4bMCStl/TmRrYhIn4dEZOL2r+kmZLulPS0pE2S7pB0SlGvZ1aNg8MsB0lDGvjac4AbgG8BY4HDgU8Db+/FviTJv//WK/7BsQFP0n6SFkh6RNITkpZIelHZ+hsk/bekv6RP81PL1l0r6auSbpX0DHBSGtlcIGlV2uZ7kvZP9d8oqaNs+5p10/p/lPSYpI2S/kFSSDqqSh8EfAm4JCKuiYi/RMTOiLgjIt6f6lwk6dtl20xI+xualn8l6XOS7gKeBeZLaqt4nY9KuiU9HyHpi5IelfRHSV+T1LKXb4cNAA4OGww+DMwG/gcwGvgzcFXZ+p8Ak4CXACuA71Rsfw7wOeBg4P+lsjOBWcBE4DXA3B5ev2pdSbOAjwFvBo4C3tjDPiYD44Abe6hTj/8FnEfWl68BkyVNKlt/DnBden4p8HLg6NS+MWQjHBvkHBw2GHwQuDAiOiLiOeAiYE73J/GI+EZEPF227rWSDinb/gcRcVf6hP/XVHZFRGyMiCeBH5L9ca2lVt0zgW9GRHtEPJteu5YXp38fq6/LNV2bXm97RPwF+AFwNkAKkFcAt6QRznnARyPiyYh4Gvi/wFl7+fo2ADg4bDA4Evi+pM2SNgMPAzuAwyUNkXRpOoz1FLA+bXNY2fYbquzzv8uePwsc1MPr16o7umLf1V6n2xPp3yN6qFOPyte4jhQcZKONm1OItQIHAMvL/t9uS+U2yDk4bDDYAJwcEaPKHvtHRCfZH8tTyQ4XHQJMSNuobPuippB+jOwkd7dxPdRdQ9aP03uo8wzZH/tuf1OlTmVffgq0SjqaLEC6D1M9DnQBU8v+zw6JiJ4C0gYJB4cNNMMk7V/2GEp2LP9zko4EkNQq6dRU/2DgObJP9AeQHY7ZV5YA75X0SkkHAJ+qVTGy+x98DPiUpPdKGplO+h8vaXGqthI4UdL4dKht4Z4aEBHbyK7Uugx4EVmQEBE7ga8DX5b0EgBJYyTN7G1nbeBwcNhAcyvZJ+Xux0XA5cAtwO2SngbuBV6X6n8L+APQCTyU1u0TEfET4Argl8Dastd+rkb9G4F3Au8DNgJ/BD5Ldp6CiPgp8D1gFbAc+FGdTbmObMR1Q0RsLyv/eHe70mG8n5GdpLdBTr6Rk1lzkPRK4EFgRMUfcLOm4hGHWQNJekf6vsShwOeBHzo0rNkVGhySZklaI2mtpAVV1p8oaYWk7elbsZXrR0rqkHRllXW3SHqwqLab7SMfAP4EPEJ2pdeHGtscsz0bWtSO09QMVwFvATqAZZJuiYiHyqo9SvZlqAtq7OYS4M4q+z4N2NKnDTZrgIiY1eg2mOVV5IjjOGBtRKyLiK3A9WSXPT4vItZHxCpgZ+XGkqaTzcVze0X5QWRXl3y2qIabmVlthY04yKYnKP+yUQcvXMnSozT52iLgXWRXe5S7JK17tt6GHHbYYTFhwoR6q5uZGbB8+fLHI2K3L30WGRx7Yx5wa0R0ZDMfZNKXlF4WER+VNKGnHUg6j2zKBMaPH09bW1tP1c3MrIKkP1QrLzI4Otn1m7BjU1k9ZgAnSJpHNj3DcElbyK63L0laT9b2l0j6VUS8sXIHEbEYWAxQKpV8zbGZWR8pMjiWAZMkTSQLjLPIpnfYo4g4t/u5pLlAKSK6r8r6aiqfAPyoWmiYmVlxCjs5nq5FPx9YSjap3JKIaJd0sdIdyyQdm+5dcAZwtaT2otpjZmZ9Y1B8c7xUKoXPcZiZ5SNpeUSUKsv9zXEzM8ulWa+qarib7+/ksqVr2Li5i9GjWpg/czKzp41pdLPMzBrOwVHFzfd3svCm1XRt2wFA5+YuFt60GsDhYf2GP/xYUXyOo4o3XPoLOjd37VY+fMh+TBs/qg9bZlaMx7c8x+8ff4adZb/e+wkmHnYghx00onENs31qyuiR/NPbp/Z6e5/jyGFjldAA2Lpjt5lRzJrShie7dgkNgJ2RlZvtLR+qqmL0qJaqI44xo1r43gdmNKBFZvlMXPDjquXbduz0z7DtNY84qpg/czItw4bsUtYybAjzZ/rmZ9Y/jB7VkqvcLA8HRxWzp43hn097NWNGtSCykcY/n/Zqn1i0fsMffqxIPlRVw+xpYxwU1m91/+z6qiorgoPDbIDyhx8rig9VmZlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLoUGh6RZktZIWitpQZX1J0paIWm7pDlV1o+U1CHpyrKy2yQ9IKld0tckDanczszMilNYcKQ/6FcBJwNTgLMlTamo9igwF7iuxm4uAe6sKDszIl4LvApoBc7oqzabmdmeFTniOA5YGxHrImIrcD1wanmFiFgfEauAnZUbS5oOHA7cXrHNU+npUGA4EAW03czMaigyOMYAG8qWO1LZHknaD1gEXFBj/VLgT8DTwI016pwnqU1S26ZNm/K028zMetCsJ8fnAbdGREe1lRExEzgCGAG8qUadxRFRiohSa2trcS01Mxtkhha4705gXNny2FRWjxnACZLmAQcBwyVtiYjnT7BHxF8l/YDs8NdP+6jNZma2B0UGxzJgkqSJZIFxFnBOPRtGxLndzyXNBUoRsUDSQcDBEfGYpKHA24Bf93nLzcyspsIOVUXEduB8YCnwMLAkItolXSzpFABJx0rqILsy6mpJ7XvY7YHALZJWASvJznN8rag+mJnZ7hQx8C9KKpVK0dbW1uhmmJn1K5KWR0SpsrxZT46bmVmTcnCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8ul0OCQNEvSGklrJS2osv5ESSskbZc0p8r6kZI6JF2Zlg+Q9GNJ/yWpXdKlRbbfzMx2V1hwSBoCXAWcDEwBzpY0paLao8Bc4Loau7kEuLOi7IsR8QpgGvAGSSf3WaPNzGyPihxxHAesjYh1EbEVuB44tbxCRKyPiFXAzsqNJU0HDgduL6v/bET8Mj3fCqwAxhbXBTMzq1RkcIwBNpQtd6SyPZK0H7AIuKCHOqOAtwM/r7H+PEltkto2bdpUb5vNzGwPmvXk+Dzg1ojoqLZS0lDgu8AVEbGuWp2IWBwRpYgotba2FthUM7PBZWiB++4ExpUtj01l9ZgBnCBpHnAQMFzSlojoPsG+GPhdRHylrxprZmb1KTI4lgGTJE0kC4yzgHPq2TAizu1+LmkuUOoODUmfBQ4B/qGvG2xmZntW2KGqiNgOnA8sBR4GlkREu6SLJZ0CIOlYSR3AGcDVktp72qekscCFZFdprZC0UpIDxMxsH1JENLoNhSuVStHW1tboZpiZ9SuSlkdEqbK8WU+Om5lZk3JwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCyXXgWHpJ/0dUPMzKx/qHkjJ0nH1FoFHF1Ia8zMrOn1dAfAZcAdZEFRaVQhrTEzs6bXU3A8DHwgIn5XuULShuKaZGZmzayncxwX9bD+w33fFDMz6w9qjjgi4sYe1t1cSGvMzKzp+XJcMzPLxcFhZma5ODjMzCyXPQaHpAMkfUrS19PyJEl/X3zTzMysGdUz4vgm8BwwIy13Ap8trEVmZtbU6gmOl0XEF4BtABHxLNW/FGhmZoNAPcGxVVILEACSXkY2AjEzs0Gop2+Od/sn4DZgnKTvAG8A5hbZKDMza157HHFExE+B08jC4rtAKSJ+Vc/OJc2StEbSWkkLqqw/UdIKSdslzamyfqSkDklXlpV9TtIGSVvqaYOZmfWteq6qOgY4EngM2AiMl/QyST2OViQNAa4CTgamAGdLmlJR7VGyQLquxm4uAe6sKPshcNye2m1mZsWo51DVvwLHAKvIToq/CmgHDpH0oYi4vcZ2xwFrI2IdgKTrgVOBh7orRMT6tG5n5caSpgOHkx0mK5Vtc29aX0fTzcysr9VzcnwjMC0iShExHZgGrAPeAnyhh+3GAOWz6Haksj2StB+wCLignvo19nGepDZJbZs2bertbszMrEI9wfHyiGjvXoiIh4BXdI8kCjIPuDUiOnq7g4hYnMKu1Nra2odNMzMb3Oo5VNUu6avA9Wn5ncBDkkaQvttRQycwrmx5bCqrxwzgBEnzgIOA4ZK2RMRuJ9jNzGzfqic45pKNAD6Slu8iO4S0DTiph+2WAZMkTSQLjLOAc+ppVESc2/1c0lyyK7kcGmZmTaCey3G7ImJRRLwjPb4YEc9GxM6IqHlJbERsB84HlpLdTXBJRLRLuljSKQCSjpXUAZwBXC2pvdb+ukn6QtrmgHSp7kX1ddXMzPqCIqLnCtLvSd8aLxcRLy2qUX2tVCpFW1tbo5thZtavSFoeEaXK8noOVZVvtD/Z6OBFfdUwMzPrX+o5VPVE2aMzIr4CvK34ppmZWTPa44gjfXO8235kI5B6RipmZjYA1RMAi8qebwfWA2cW0hozM2t6ewyOiOjpklszMxtk6pnk8BBJX+qevkPSIkmH7IvGmZlZ86lnypFvAE+THZ46E3iK7HayZmY2CNVzjuNlEXF62fJnJK0sqD1mZtbk6hlxdEk6vntB0huAruKaZGZmzayeEceHgH9P5zUEPAm8p9BWmZlZ06rnqqqVwGsljUxFz5BNWLiqwHaZmVmTqnmoKt3ve6GkKyW9hewE+buBtfh7HGZmg1ZPI47/AP4M3AO8H7iQ7FDVO9IoxMzMBqGeguOlEfFqAEnXAI8B4yPir/ukZWZm1pR6Co7n7+4XETskdTg0zMya3833d3LZ0jVs3NzF6FEtzJ85mdnTxvTZ/nsKjtdKeio9F9CSlgVERIysvamZmTXCzfd3svCm1XRt2wFA5+YuFt60GqDPwqPmyfGIGBIRI9Pj4IgYWvbcoWFm1oQuW7rm+dDo1rVtB5ctXdNnr1HPFwDNzKyf2Li5+veza5X3hoPDzGwAGT2qJVd5bzg4zMwGkPkzJ9MybMguZS3DhjB/5uQ+ew3fyc/MbADpPgHeqKuqzMysH5o9bUyfBkUlH6oyM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy6XQ4JA0S9IaSWslLaiy/kRJKyRtlzSnyvqRkjokXVlWNl3S6rTPKySpyD6YmdmuCgsOSUOAq4CTgSnA2ZKmVFR7FJgLXFdjN5cAd1aUfZXs/iCT0mNWHzXZzMzqUOSI4zhgbUSsi4itwPXAqeUVImJ9RKwCdlZuLGk6cDhwe1nZEcDIiLg3IgL4FjC7uC6YmVmlIoNjDLChbLkjle2RpP2ARcAFVfbZUc8+JZ0nqU1S26ZNm+putJmZ9axZT47PA26NiI491qwhIhZHRCkiSq2trX3YNDOzwa3IKUc6gXFly2NTWT1mACdImgccBAyXtAW4PO2nN/s0M7M+UGRwLAMmSZpI9sf9LOCcejaMiHO7n0uaC5QiYkFafkrS3wL3Ae8G/qWP221mZj0o7FBVRGwHzgeWAg8DSyKiXdLFkk4BkHSspA7gDOBqSe117HoecA2wFngE+EkhHTAzs6qUXZw0sJVKpWhra2t0M8zM+hVJyyOiVFnerCfHzcysSTk4zMwsFweHmZnl4uAwM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy8XBYWZmuTg4zMwsFweHmZnl4uAwM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy8XBYWZmuTg4zMwsFweHmZnl4uAwM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy8XBYWZmuTg4zMwsFweHmZnlUmhwSJolaY2ktZIWVFl/oqQVkrZLmlNWfmQqXympXdIHy9a9U9KqVP75IttvZma7Kyw4JA0BrgJOBqYAZ0uaUlHtUWAucF1F+WPAjIg4GngdsEDSaEkvBi4D/i4ipgJ/I+nviuqDmZntrsgRx3HA2ohYFxFbgeuBU8srRMT6iFgF7Kwo3xoRz6XFEWXtfCnwu4jYlJZ/BpxeVAfMzGx3RQbHGGBD2XJHKquLpHGSVqV9fD4iNgJrgcmSJkgaCswGxtXY/jxJbZLaNm3aVK2KmZn1QtOeHI+IDRHxGuAo4D2SDo+IPwMfAr4H/BpYD+yosf3iiChFRKm1tXVfNdvMbMArMjg62XU0MDaV5ZJGGg8CJ6TlH0bE6yJiBrAG+G0ftNXMzOpUZHAsAyZJmihpOHAWcEs9G0oaK6klPT8UOJ4sJJD0krLyecA1BbTdzMxqKCw4ImI7cD6wFHgYWBIR7ZIulnQKgKRjJXUAZwBXS2pPm78SuE/SA8AdwBcjYnVad7mkh4C7gEsjwiMOM7N9SBHR6DYUrlQqRVtbW6ObYWbWr0haHhGlyvKmPTluZmbNycFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCyXoY1ugBXj5vs7uWzpGjZu7mL0qBbmz5zM7GljGt0sMxsAHBwD0M33d7LwptV0bdsBQOfmLhbetBrA4WFme82Hqgagy5aueT40unVt28FlS9c0qEVmNpA4OAagjZu7cpWbmeXh4BiARo9qyVVuZpaHg2MAmj9zMi3DhuxS1jJsCPNnTm5Qi8xsIPHJ8QGo+wS4r6oysyIUGhySZgGXA0OAayLi0or1JwJfAV4DnBURN6byI4Hvk42IhgH/EhFfS+vOBj4BBLAReFdEPF5kP/qj2dPGOCjMrBCFHaqSNAS4CjgZmAKcLWlKRbVHgbnAdRXljwEzIuJo4HXAAkmjJQ0lC6KTIuI1wCrg/KL6YGZmuyvyHMdxwNqIWBcRW4HrgVPLK0TE+ohYBeysKN8aEc+lxRFl7VR6HChJwEiyUYeZme0jRQbHGGBD2XJHKquLpHGSVqV9fD4iNkbENuBDwGqywJgC/FuN7c+T1CapbdOmTb3tg5mZVWjaq6oiYkM6HHUU8B5Jh0saRhYc04DRZIeqFtbYfnFElCKi1Nraus/abWY20BUZHJ3AuLLlsaksl4jYCDwInAAcncoeiYgAlgCv3+uWmplZ3Yq8qmoZMEnSRLLAOAs4p54NJY0FnoiILkmHAscDXwaeAKZIao2ITcBbgIf3tL/ly5c/LukPvexHf3AYMFivLHPfB6fB3HfYd/0/slphYcEREdslnQ8sJbsc9xsR0S7pYqAtIm6RdCzZZbeHAm+X9JmImAq8ElgkKchOhn8xIlYDSPoMcKekbcAfyK7K2lNbBvSxKkltEVFqdDsawX133wejRvdf2REf688a/UPUSO67+z4YNbr/TXty3MzMmpODY2BY3OgGNJD7PjgN5r5Dg/vvQ1VmZpaLRxxmZpaLg8PMzHJxcDShNN3KLyU9JKld0v8pW/dhSf+Vyr+QyoZJ+ndJqyU9LGlhWf1ZktZIWitpQSP6k0etvkv6nqSV6bFe0sqybRam/q2RNLOsfED3XdJbJC1P7/tySW8q29f0VL5W0hVpbrem1pv3Pq0fL2mLpAvKygb0e5/WvUbSPan+akn7p/Li3/uI8KPJHsARwDHp+cHAb8nm5ToJ+BkwIq17Sfr3HOD69PwAYD0wgez7M48ALwWGAw8AUxrdv970vaLOIuDT6fmU1K8RwMTU3yGDpO/TgNHp+auAzrJ6vwH+lux7UD8BTm50//q6/2VlNwI3ABek5cHw3g8lm3LptWn5xcCQffXee8TRhCLisYhYkZ4/Tfbt+DFk83RdGmnm4Ij4U/cmZDMGDwVagK3AU9QxQ3Gz6aHvAKRPT2cC301Fp5KF5nMR8XtgLVm/B3zfI+L+yKbkAWgHWiSNkHQEMDIi7o3sL8m3gNn7rie904v3Hkmzgd+T9b/bgH/vgf8JrIqIB9I2T0TEjn313js4mpykCWSfLO8DXg6cIOk+SXekb95D9onrGbL7mDxK9k37J9nLGYobraLv3U4A/hgRv0vLtfo4GPpe7nRgRfpQMYasv936Vd+hvv5LOgj4OPCZis0Hw3v/ciAkLZW0QtI/pvJ98t771rFNLP1i/CfwkYh4Ko0oXkQ2DD0WWCLppWSfsHaQzRh8KPBrST9rULP7RGXfy1adTdknzoEob98lTQU+T/YptN/L0f+LgC9HxJZ+cAqnLjn6PpRsDr9jgWeBn0taDvxlX7TTwdGklE0h/5/AdyLiplTcAdyUhqC/kbSTbLKzc4DbIrtfyZ8k3QWUyD517fUMxftajb6TgvM0YHpZ9Z5mYR7ofe+eEPT7wLsj4pFU3EnW3279ou+Qu/+vA+You0hkFLBT0l+B5Qz8974DuDPSbbMl3QocA3ybffHeN/qkkB9VT5SJ7NjkVyrKPwhcnJ6/nCwYRDZc/2YqPxB4iOw+7kOBdWQnjbtPEk5tdP960/e0bhZwR0XZVHY9Ob6O7OToYOj7qNSv06rUrzxB+tZG96+v+1+x/iJeODk+GN77Q4EVZBfDDCW7aOZt++q9b/h/mB9Vf4iOJzvhvQpYmR5vTb8E3ya7P8kK4E2p/kFkV5W0p9CYX7avt5JdofEIcGGj+9bbvqd11wIfrLLNhal/ayi7gmSg9x34JNm5rZVlj+4r7Urp5+QR4ErSLBHN/OjNe1+27fPBMRje+1T+rvQ7/yDwhbLywt97TzliZma5+KoqMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHNbvSfqypI+ULS+VdE3Z8iJJH+th+2slzUnPfyVpt3s5K5uB+FJJv0tTPNwj6eS0br2kw3rR7udft8b6q9KsqA9J6iqbJXWOpFsljcr7mnW06QhJP+ph/XBJd6Yvpdkg5eCwgeAu4PUAkvYj+zb91LL1rwfu3svXuIRsBtNXRcQxZBPHHbyX++xRRPzviDia7DsJj0TE0elxY0S8NSI2F/CyHwO+3kObtgI/B95ZwGtbP+HgsIHgbmBGej6V7MtPT0s6VNII4JXACkmflrRM0oOSFtd7nwJJBwDvBz4cL8xM/MeIWFKl7sfS/h+sGAW9W9IqSQ9I+o8q212SRiBD6mzTekmHSZqg7P4s10r6raTvSHqzpLvS6Oi4VP9ASd+Q9BtJ90uqNVvs6cBtaZupqf7K1PZJqc7NwLn1tNMGJg83rd+LiI2StksaTza6uIdsRtAZZJO+rY6IrZKujIiLAdIf778HfljHSxwFPBq7Tjq3G0nTgfeSzaEk4D5Jd5BNc/9J4PUR8bikF1VsdxnZ6OW90btv5B4FnAG8D1hGNnfZ8cApwCfIRkcXAr+IiPelQ1y/kfSziHimrB0TgT93hyPZFDeXR8R3JA0nm8oFsmDunpnZBiGPOGyguJssNLqD456y5btSnZOUTUm/GngTux7O6gvHA9+PiGciYgtwE9l02G8Cbog0IV1kU953+xRwSER8sJehAfD7iFgdETvJpqD4edrXarIbekE2c+4CZXeQ+xWwPzC+Yj9HAJvKlu8BPiHp48CREdGV2r8D2Cqp0EN11rwcHDZQdJ/neDXZJ+J7yUYcrwfuVnZbzX8F5kTEq8mO4+9f577XAuMljezzVmcjhOmVo5Ccnit7vrNseScvHFUQcHrZeZLxEfFwxX66KPs/iYjryEYtXcCtKrs1Ldmkkn/dizZbP+bgsIHibrJDT09GxI70qX4UWXjczQt/EB9P9zyoeTVTpYh4Fvg34PJ0yAZJrZLOqKj6a2C2pAMkHQi8I5X9AjhD0ovTtuUhcRtwKfDjgj/BLwU+3H1eR9K0KnV+ywsjFJTd62VdRFwB/IBsxmVSPx6PbBp/G4QcHDZQrCa7mureirK/RMTj6Qqkr5ONRpaSfdLP45Nkh3EekvQg8COy2/M+L7Jbf15LNq31fcA1kd3etR34HHCHpAeAL1Vsd0Nq2y2SWnK2q16XAMOAVZLa0/Iu0vmORyQdlYrOBB5Mh7deRTbtN8BJwI8Laqf1A54d18yeJ+kdwPSI+GQPdW4CFkTEb/ddy6yZ+KoqM3teRHy/+5BaNelQ3c0OjcHNIw4zM8vF5zjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcvn/bO0s6LCmZj4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAewklEQVR4nO3de5hcVZ3u8e9LbjSXEJSWITcSJUYTL4QUOFHgiKMnQUeIEJCLR6PPiJqDz1EfMiaiDoKeQTEqDIwSGWUcRQwMIioSvIKHm+mEkNAw0RAj6Q6jAYwQaMntd/7Yq6FSqerU7vROVXe/n+epJ7XXXnvXWqnufmvtvWttRQRmZmb12q/RDTAzs/7FwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDrA9JOkHSmka3w6xIDg4bMCStl/TmRrYhIn4dEZOL2r+kmZLulPS0pE2S7pB0SlGvZ1aNg8MsB0lDGvjac4AbgG8BY4HDgU8Db+/FviTJv//WK/7BsQFP0n6SFkh6RNITkpZIelHZ+hsk/bekv6RP81PL1l0r6auSbpX0DHBSGtlcIGlV2uZ7kvZP9d8oqaNs+5p10/p/lPSYpI2S/kFSSDqqSh8EfAm4JCKuiYi/RMTOiLgjIt6f6lwk6dtl20xI+xualn8l6XOS7gKeBeZLaqt4nY9KuiU9HyHpi5IelfRHSV+T1LKXb4cNAA4OGww+DMwG/gcwGvgzcFXZ+p8Ak4CXACuA71Rsfw7wOeBg4P+lsjOBWcBE4DXA3B5ev2pdSbOAjwFvBo4C3tjDPiYD44Abe6hTj/8FnEfWl68BkyVNKlt/DnBden4p8HLg6NS+MWQjHBvkHBw2GHwQuDAiOiLiOeAiYE73J/GI+EZEPF227rWSDinb/gcRcVf6hP/XVHZFRGyMiCeBH5L9ca2lVt0zgW9GRHtEPJteu5YXp38fq6/LNV2bXm97RPwF+AFwNkAKkFcAt6QRznnARyPiyYh4Gvi/wFl7+fo2ADg4bDA4Evi+pM2SNgMPAzuAwyUNkXRpOoz1FLA+bXNY2fYbquzzv8uePwsc1MPr16o7umLf1V6n2xPp3yN6qFOPyte4jhQcZKONm1OItQIHAMvL/t9uS+U2yDk4bDDYAJwcEaPKHvtHRCfZH8tTyQ4XHQJMSNuobPuippB+jOwkd7dxPdRdQ9aP03uo8wzZH/tuf1OlTmVffgq0SjqaLEC6D1M9DnQBU8v+zw6JiJ4C0gYJB4cNNMMk7V/2GEp2LP9zko4EkNQq6dRU/2DgObJP9AeQHY7ZV5YA75X0SkkHAJ+qVTGy+x98DPiUpPdKGplO+h8vaXGqthI4UdL4dKht4Z4aEBHbyK7Uugx4EVmQEBE7ga8DX5b0EgBJYyTN7G1nbeBwcNhAcyvZJ+Xux0XA5cAtwO2SngbuBV6X6n8L+APQCTyU1u0TEfET4Argl8Dastd+rkb9G4F3Au8DNgJ/BD5Ldp6CiPgp8D1gFbAc+FGdTbmObMR1Q0RsLyv/eHe70mG8n5GdpLdBTr6Rk1lzkPRK4EFgRMUfcLOm4hGHWQNJekf6vsShwOeBHzo0rNkVGhySZklaI2mtpAVV1p8oaYWk7elbsZXrR0rqkHRllXW3SHqwqLab7SMfAP4EPEJ2pdeHGtscsz0bWtSO09QMVwFvATqAZZJuiYiHyqo9SvZlqAtq7OYS4M4q+z4N2NKnDTZrgIiY1eg2mOVV5IjjOGBtRKyLiK3A9WSXPT4vItZHxCpgZ+XGkqaTzcVze0X5QWRXl3y2qIabmVlthY04yKYnKP+yUQcvXMnSozT52iLgXWRXe5S7JK17tt6GHHbYYTFhwoR6q5uZGbB8+fLHI2K3L30WGRx7Yx5wa0R0ZDMfZNKXlF4WER+VNKGnHUg6j2zKBMaPH09bW1tP1c3MrIKkP1QrLzI4Otn1m7BjU1k9ZgAnSJpHNj3DcElbyK63L0laT9b2l0j6VUS8sXIHEbEYWAxQKpV8zbGZWR8pMjiWAZMkTSQLjLPIpnfYo4g4t/u5pLlAKSK6r8r6aiqfAPyoWmiYmVlxCjs5nq5FPx9YSjap3JKIaJd0sdIdyyQdm+5dcAZwtaT2otpjZmZ9Y1B8c7xUKoXPcZiZ5SNpeUSUKsv9zXEzM8ulWa+qarib7+/ksqVr2Li5i9GjWpg/czKzp41pdLPMzBrOwVHFzfd3svCm1XRt2wFA5+YuFt60GsDhYf2GP/xYUXyOo4o3XPoLOjd37VY+fMh+TBs/qg9bZlaMx7c8x+8ff4adZb/e+wkmHnYghx00onENs31qyuiR/NPbp/Z6e5/jyGFjldAA2Lpjt5lRzJrShie7dgkNgJ2RlZvtLR+qqmL0qJaqI44xo1r43gdmNKBFZvlMXPDjquXbduz0z7DtNY84qpg/czItw4bsUtYybAjzZ/rmZ9Y/jB7VkqvcLA8HRxWzp43hn097NWNGtSCykcY/n/Zqn1i0fsMffqxIPlRVw+xpYxwU1m91/+z6qiorgoPDbIDyhx8rig9VmZlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLoUGh6RZktZIWitpQZX1J0paIWm7pDlV1o+U1CHpyrKy2yQ9IKld0tckDanczszMilNYcKQ/6FcBJwNTgLMlTamo9igwF7iuxm4uAe6sKDszIl4LvApoBc7oqzabmdmeFTniOA5YGxHrImIrcD1wanmFiFgfEauAnZUbS5oOHA7cXrHNU+npUGA4EAW03czMaigyOMYAG8qWO1LZHknaD1gEXFBj/VLgT8DTwI016pwnqU1S26ZNm/K028zMetCsJ8fnAbdGREe1lRExEzgCGAG8qUadxRFRiohSa2trcS01Mxtkhha4705gXNny2FRWjxnACZLmAQcBwyVtiYjnT7BHxF8l/YDs8NdP+6jNZma2B0UGxzJgkqSJZIFxFnBOPRtGxLndzyXNBUoRsUDSQcDBEfGYpKHA24Bf93nLzcyspsIOVUXEduB8YCnwMLAkItolXSzpFABJx0rqILsy6mpJ7XvY7YHALZJWASvJznN8rag+mJnZ7hQx8C9KKpVK0dbW1uhmmJn1K5KWR0SpsrxZT46bmVmTcnCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8vFwWFmZrk4OMzMLBcHh5mZ5eLgMDOzXBwcZmaWi4PDzMxycXCYmVkuDg4zM8ul0OCQNEvSGklrJS2osv5ESSskbZc0p8r6kZI6JF2Zlg+Q9GNJ/yWpXdKlRbbfzMx2V1hwSBoCXAWcDEwBzpY0paLao8Bc4Loau7kEuLOi7IsR8QpgGvAGSSf3WaPNzGyPihxxHAesjYh1EbEVuB44tbxCRKyPiFXAzsqNJU0HDgduL6v/bET8Mj3fCqwAxhbXBTMzq1RkcIwBNpQtd6SyPZK0H7AIuKCHOqOAtwM/r7H+PEltkto2bdpUb5vNzGwPmvXk+Dzg1ojoqLZS0lDgu8AVEbGuWp2IWBwRpYgotba2FthUM7PBZWiB++4ExpUtj01l9ZgBnCBpHnAQMFzSlojoPsG+GPhdRHylrxprZmb1KTI4lgGTJE0kC4yzgHPq2TAizu1+LmkuUOoODUmfBQ4B/qGvG2xmZntW2KGqiNgOnA8sBR4GlkREu6SLJZ0CIOlYSR3AGcDVktp72qekscCFZFdprZC0UpIDxMxsH1JENLoNhSuVStHW1tboZpiZ9SuSlkdEqbK8WU+Om5lZk3JwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCyXXgWHpJ/0dUPMzKx/qHkjJ0nH1FoFHF1Ia8zMrOn1dAfAZcAdZEFRaVQhrTEzs6bXU3A8DHwgIn5XuULShuKaZGZmzayncxwX9bD+w33fFDMz6w9qjjgi4sYe1t1cSGvMzKzp+XJcMzPLxcFhZma5ODjMzCyXPQaHpAMkfUrS19PyJEl/X3zTzMysGdUz4vgm8BwwIy13Ap8trEVmZtbU6gmOl0XEF4BtABHxLNW/FGhmZoNAPcGxVVILEACSXkY2AjEzs0Gop2+Od/sn4DZgnKTvAG8A5hbZKDMza157HHFExE+B08jC4rtAKSJ+Vc/OJc2StEbSWkkLqqw/UdIKSdslzamyfqSkDklXlpV9TtIGSVvqaYOZmfWteq6qOgY4EngM2AiMl/QyST2OViQNAa4CTgamAGdLmlJR7VGyQLquxm4uAe6sKPshcNye2m1mZsWo51DVvwLHAKvIToq/CmgHDpH0oYi4vcZ2xwFrI2IdgKTrgVOBh7orRMT6tG5n5caSpgOHkx0mK5Vtc29aX0fTzcysr9VzcnwjMC0iShExHZgGrAPeAnyhh+3GAOWz6Haksj2StB+wCLignvo19nGepDZJbZs2bertbszMrEI9wfHyiGjvXoiIh4BXdI8kCjIPuDUiOnq7g4hYnMKu1Nra2odNMzMb3Oo5VNUu6avA9Wn5ncBDkkaQvttRQycwrmx5bCqrxwzgBEnzgIOA4ZK2RMRuJ9jNzGzfqic45pKNAD6Slu8iO4S0DTiph+2WAZMkTSQLjLOAc+ppVESc2/1c0lyyK7kcGmZmTaCey3G7ImJRRLwjPb4YEc9GxM6IqHlJbERsB84HlpLdTXBJRLRLuljSKQCSjpXUAZwBXC2pvdb+ukn6QtrmgHSp7kX1ddXMzPqCIqLnCtLvSd8aLxcRLy2qUX2tVCpFW1tbo5thZtavSFoeEaXK8noOVZVvtD/Z6OBFfdUwMzPrX+o5VPVE2aMzIr4CvK34ppmZWTPa44gjfXO8235kI5B6RipmZjYA1RMAi8qebwfWA2cW0hozM2t6ewyOiOjpklszMxtk6pnk8BBJX+qevkPSIkmH7IvGmZlZ86lnypFvAE+THZ46E3iK7HayZmY2CNVzjuNlEXF62fJnJK0sqD1mZtbk6hlxdEk6vntB0huAruKaZGZmzayeEceHgH9P5zUEPAm8p9BWmZlZ06rnqqqVwGsljUxFz5BNWLiqwHaZmVmTqnmoKt3ve6GkKyW9hewE+buBtfh7HGZmg1ZPI47/AP4M3AO8H7iQ7FDVO9IoxMzMBqGeguOlEfFqAEnXAI8B4yPir/ukZWZm1pR6Co7n7+4XETskdTg0zMya3833d3LZ0jVs3NzF6FEtzJ85mdnTxvTZ/nsKjtdKeio9F9CSlgVERIysvamZmTXCzfd3svCm1XRt2wFA5+YuFt60GqDPwqPmyfGIGBIRI9Pj4IgYWvbcoWFm1oQuW7rm+dDo1rVtB5ctXdNnr1HPFwDNzKyf2Li5+veza5X3hoPDzGwAGT2qJVd5bzg4zMwGkPkzJ9MybMguZS3DhjB/5uQ+ew3fyc/MbADpPgHeqKuqzMysH5o9bUyfBkUlH6oyM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy6XQ4JA0S9IaSWslLaiy/kRJKyRtlzSnyvqRkjokXVlWNl3S6rTPKySpyD6YmdmuCgsOSUOAq4CTgSnA2ZKmVFR7FJgLXFdjN5cAd1aUfZXs/iCT0mNWHzXZzMzqUOSI4zhgbUSsi4itwPXAqeUVImJ9RKwCdlZuLGk6cDhwe1nZEcDIiLg3IgL4FjC7uC6YmVmlIoNjDLChbLkjle2RpP2ARcAFVfbZUc8+JZ0nqU1S26ZNm+putJmZ9axZT47PA26NiI491qwhIhZHRCkiSq2trX3YNDOzwa3IKUc6gXFly2NTWT1mACdImgccBAyXtAW4PO2nN/s0M7M+UGRwLAMmSZpI9sf9LOCcejaMiHO7n0uaC5QiYkFafkrS3wL3Ae8G/qWP221mZj0o7FBVRGwHzgeWAg8DSyKiXdLFkk4BkHSspA7gDOBqSe117HoecA2wFngE+EkhHTAzs6qUXZw0sJVKpWhra2t0M8zM+hVJyyOiVFnerCfHzcysSTk4zMwsFweHmZnl4uAwM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy8XBYWZmuTg4zMwsFweHmZnl4uAwM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy8XBYWZmuTg4zMwsFweHmZnl4uAwM7NcHBxmZpaLg8PMzHJxcJiZWS4ODjMzy8XBYWZmuTg4zMwsFweHmZnlUmhwSJolaY2ktZIWVFl/oqQVkrZLmlNWfmQqXympXdIHy9a9U9KqVP75IttvZma7Kyw4JA0BrgJOBqYAZ0uaUlHtUWAucF1F+WPAjIg4GngdsEDSaEkvBi4D/i4ipgJ/I+nviuqDmZntrsgRx3HA2ohYFxFbgeuBU8srRMT6iFgF7Kwo3xoRz6XFEWXtfCnwu4jYlJZ/BpxeVAfMzGx3RQbHGGBD2XJHKquLpHGSVqV9fD4iNgJrgcmSJkgaCswGxtXY/jxJbZLaNm3aVK2KmZn1QtOeHI+IDRHxGuAo4D2SDo+IPwMfAr4H/BpYD+yosf3iiChFRKm1tXVfNdvMbMArMjg62XU0MDaV5ZJGGg8CJ6TlH0bE6yJiBrAG+G0ftNXMzOpUZHAsAyZJmihpOHAWcEs9G0oaK6klPT8UOJ4sJJD0krLyecA1BbTdzMxqKCw4ImI7cD6wFHgYWBIR7ZIulnQKgKRjJXUAZwBXS2pPm78SuE/SA8AdwBcjYnVad7mkh4C7gEsjwiMOM7N9SBHR6DYUrlQqRVtbW6ObYWbWr0haHhGlyvKmPTluZmbNycFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcnFwmJlZLg4OMzPLxcFhZma5ODjMzCyXoY1ugBXj5vs7uWzpGjZu7mL0qBbmz5zM7GljGt0sMxsAHBwD0M33d7LwptV0bdsBQOfmLhbetBrA4WFme82Hqgagy5aueT40unVt28FlS9c0qEVmNpA4OAagjZu7cpWbmeXh4BiARo9qyVVuZpaHg2MAmj9zMi3DhuxS1jJsCPNnTm5Qi8xsIPHJ8QGo+wS4r6oysyIUGhySZgGXA0OAayLi0or1JwJfAV4DnBURN6byI4Hvk42IhgH/EhFfS+vOBj4BBLAReFdEPF5kP/qj2dPGOCjMrBCFHaqSNAS4CjgZmAKcLWlKRbVHgbnAdRXljwEzIuJo4HXAAkmjJQ0lC6KTIuI1wCrg/KL6YGZmuyvyHMdxwNqIWBcRW4HrgVPLK0TE+ohYBeysKN8aEc+lxRFl7VR6HChJwEiyUYeZme0jRQbHGGBD2XJHKquLpHGSVqV9fD4iNkbENuBDwGqywJgC/FuN7c+T1CapbdOmTb3tg5mZVWjaq6oiYkM6HHUU8B5Jh0saRhYc04DRZIeqFtbYfnFElCKi1Nraus/abWY20BUZHJ3AuLLlsaksl4jYCDwInAAcncoeiYgAlgCv3+uWmplZ3Yq8qmoZMEnSRLLAOAs4p54NJY0FnoiILkmHAscDXwaeAKZIao2ITcBbgIf3tL/ly5c/LukPvexHf3AYMFivLHPfB6fB3HfYd/0/slphYcEREdslnQ8sJbsc9xsR0S7pYqAtIm6RdCzZZbeHAm+X9JmImAq8ElgkKchOhn8xIlYDSPoMcKekbcAfyK7K2lNbBvSxKkltEVFqdDsawX133wejRvdf2REf688a/UPUSO67+z4YNbr/TXty3MzMmpODY2BY3OgGNJD7PjgN5r5Dg/vvQ1VmZpaLRxxmZpaLg8PMzHJxcDShNN3KLyU9JKld0v8pW/dhSf+Vyr+QyoZJ+ndJqyU9LGlhWf1ZktZIWitpQSP6k0etvkv6nqSV6bFe0sqybRam/q2RNLOsfED3XdJbJC1P7/tySW8q29f0VL5W0hVpbrem1pv3Pq0fL2mLpAvKygb0e5/WvUbSPan+akn7p/Li3/uI8KPJHsARwDHp+cHAb8nm5ToJ+BkwIq17Sfr3HOD69PwAYD0wgez7M48ALwWGAw8AUxrdv970vaLOIuDT6fmU1K8RwMTU3yGDpO/TgNHp+auAzrJ6vwH+lux7UD8BTm50//q6/2VlNwI3ABek5cHw3g8lm3LptWn5xcCQffXee8TRhCLisYhYkZ4/Tfbt+DFk83RdGmnm4Ij4U/cmZDMGDwVagK3AU9QxQ3Gz6aHvAKRPT2cC301Fp5KF5nMR8XtgLVm/B3zfI+L+yKbkAWgHWiSNkHQEMDIi7o3sL8m3gNn7rie904v3Hkmzgd+T9b/bgH/vgf8JrIqIB9I2T0TEjn313js4mpykCWSfLO8DXg6cIOk+SXekb95D9onrGbL7mDxK9k37J9nLGYobraLv3U4A/hgRv0vLtfo4GPpe7nRgRfpQMYasv936Vd+hvv5LOgj4OPCZis0Hw3v/ciAkLZW0QtI/pvJ98t771rFNLP1i/CfwkYh4Ko0oXkQ2DD0WWCLppWSfsHaQzRh8KPBrST9rULP7RGXfy1adTdknzoEob98lTQU+T/YptN/L0f+LgC9HxJZ+cAqnLjn6PpRsDr9jgWeBn0taDvxlX7TTwdGklE0h/5/AdyLiplTcAdyUhqC/kbSTbLKzc4DbIrtfyZ8k3QWUyD517fUMxftajb6TgvM0YHpZ9Z5mYR7ofe+eEPT7wLsj4pFU3EnW3279ou+Qu/+vA+You0hkFLBT0l+B5Qz8974DuDPSbbMl3QocA3ybffHeN/qkkB9VT5SJ7NjkVyrKPwhcnJ6/nCwYRDZc/2YqPxB4iOw+7kOBdWQnjbtPEk5tdP960/e0bhZwR0XZVHY9Ob6O7OToYOj7qNSv06rUrzxB+tZG96+v+1+x/iJeODk+GN77Q4EVZBfDDCW7aOZt++q9b/h/mB9Vf4iOJzvhvQpYmR5vTb8E3ya7P8kK4E2p/kFkV5W0p9CYX7avt5JdofEIcGGj+9bbvqd11wIfrLLNhal/ayi7gmSg9x34JNm5rZVlj+4r7Urp5+QR4ErSLBHN/OjNe1+27fPBMRje+1T+rvQ7/yDwhbLywt97TzliZma5+KoqMzPLxcFhZma5ODjMzCwXB4eZmeXi4DAzs1wcHNbvSfqypI+ULS+VdE3Z8iJJH+th+2slzUnPfyVpt3s5K5uB+FJJv0tTPNwj6eS0br2kw3rR7udft8b6q9KsqA9J6iqbJXWOpFsljcr7mnW06QhJP+ph/XBJd6Yvpdkg5eCwgeAu4PUAkvYj+zb91LL1rwfu3svXuIRsBtNXRcQxZBPHHbyX++xRRPzviDia7DsJj0TE0elxY0S8NSI2F/CyHwO+3kObtgI/B95ZwGtbP+HgsIHgbmBGej6V7MtPT0s6VNII4JXACkmflrRM0oOSFtd7nwJJBwDvBz4cL8xM/MeIWFKl7sfS/h+sGAW9W9IqSQ9I+o8q212SRiBD6mzTekmHSZqg7P4s10r6raTvSHqzpLvS6Oi4VP9ASd+Q9BtJ90uqNVvs6cBtaZupqf7K1PZJqc7NwLn1tNMGJg83rd+LiI2StksaTza6uIdsRtAZZJO+rY6IrZKujIiLAdIf778HfljHSxwFPBq7Tjq3G0nTgfeSzaEk4D5Jd5BNc/9J4PUR8bikF1VsdxnZ6OW90btv5B4FnAG8D1hGNnfZ8cApwCfIRkcXAr+IiPelQ1y/kfSziHimrB0TgT93hyPZFDeXR8R3JA0nm8oFsmDunpnZBiGPOGyguJssNLqD456y5btSnZOUTUm/GngTux7O6gvHA9+PiGciYgtwE9l02G8Cbog0IV1kU953+xRwSER8sJehAfD7iFgdETvJpqD4edrXarIbekE2c+4CZXeQ+xWwPzC+Yj9HAJvKlu8BPiHp48CREdGV2r8D2Cqp0EN11rwcHDZQdJ/neDXZJ+J7yUYcrwfuVnZbzX8F5kTEq8mO4+9f577XAuMljezzVmcjhOmVo5Ccnit7vrNseScvHFUQcHrZeZLxEfFwxX66KPs/iYjryEYtXcCtKrs1Ldmkkn/dizZbP+bgsIHibrJDT09GxI70qX4UWXjczQt/EB9P9zyoeTVTpYh4Fvg34PJ0yAZJrZLOqKj6a2C2pAMkHQi8I5X9AjhD0ovTtuUhcRtwKfDjgj/BLwU+3H1eR9K0KnV+ywsjFJTd62VdRFwB/IBsxmVSPx6PbBp/G4QcHDZQrCa7mureirK/RMTj6Qqkr5ONRpaSfdLP45Nkh3EekvQg8COy2/M+L7Jbf15LNq31fcA1kd3etR34HHCHpAeAL1Vsd0Nq2y2SWnK2q16XAMOAVZLa0/Iu0vmORyQdlYrOBB5Mh7deRTbtN8BJwI8Laqf1A54d18yeJ+kdwPSI+GQPdW4CFkTEb/ddy6yZ+KoqM3teRHy/+5BaNelQ3c0OjcHNIw4zM8vF5zjMzCwXB4eZmeXi4DAzs1wcHGZmlouDw8zMcvn/bO0s6LCmZj4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2651,18 +2652,16 @@ "id": "AzID7DyALObP" }, "outputs": [], - "source": [ - "" - ] + "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], + "include_colab_link": true, "name": "Copy of automl_nlp.ipynb", - "provenance": [], - "include_colab_link": true + "provenance": [] }, "gpuClass": "standard", "interpreter": { @@ -2769,6 +2768,100 @@ "description_width": "" } }, + "0c8473019e434db0ae34d58b69605a69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1794a34790b647b3a8a845c55e5e0744", + "placeholder": "​", + "style": "IPY_MODEL_13d813116e1846a3a0e42a5e8423f80e", + "tabbable": null, + "tooltip": null, + "value": " 7.44M/7.44M [00:00<00:00, 13.9MB/s]" + } + }, + "129488cadbb9477ca593ae106ee8e9f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "13d813116e1846a3a0e42a5e8423f80e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, "155d7e95c2504507b83b12dc60f1edc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -2791,6 +2884,83 @@ "layout": "IPY_MODEL_069feb62f1ec4392b04ee1d80aa4b445" } }, + "16fba9eb9e4542bc9d34eca00d71cc14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c81f11a99b9d4d1d95533f24bea1d5ac", + "IPY_MODEL_e4ce5cf6ea174583a14675a75d31992d", + "IPY_MODEL_0c8473019e434db0ae34d58b69605a69" + ], + "layout": "IPY_MODEL_814d3f2b7212461ca51f8635b5106783", + "tabbable": null, + "tooltip": null + } + }, + "1794a34790b647b3a8a845c55e5e0744": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "18091d361aa44881a3db5d1951882082": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -3133,6 +3303,70 @@ "description_width": "" } }, + "2aa02213244048fead33ea157c17837b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dfee126a02ef4934a0f654a101dadc1b", + "IPY_MODEL_8e58d795d528405f8d1c48bfc2afe399", + "IPY_MODEL_e23212ae504e493a85e4b2524f0217e1" + ], + "layout": "IPY_MODEL_b84af540de4741ceb206456d2f05fa4b", + "tabbable": null, + "tooltip": null + } + }, + "2aa0f33b8d3a4bc7bedf3b66e06b62f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2c31d2eb9ae44ffbb0f02ad1b1e7937a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cd5ec1bd9cf54dbfbfd577a096a9e588", + "IPY_MODEL_d1ba6870db484696879f0d6e5d3a9d70", + "IPY_MODEL_e7405147ca374cc4998ca947be069652" + ], + "layout": "IPY_MODEL_fb72bbb82aec4184a8e0a510177433cf", + "tabbable": null, + "tooltip": null + } + }, "2d975d14c3f0434583e73ae97f580951": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -3455,6 +3689,93 @@ "width": null } }, + "3c95b6d54b294fe2a958056c463ce541": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "428db79c8cd74257ad09539518a21835": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44803ba97fd54ceab2afe0555e21dfe8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, "44cf4e612b5f482d8bf224413c1bc852": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -3491,6 +3812,24 @@ "description_width": "" } }, + "470b17af8c8442e49757dc4e385d16f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, "49290455306b47aaaf8153bed5e49742": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -3640,6 +3979,59 @@ "value": "Generating test split: 98%" } }, + "4ec28fbc9433413f8355e0c976839a94": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "4fa9926221cb4d29bc0cc0c3d0bf93f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -3931,6 +4323,59 @@ "width": null } }, + "5f9f744825e44fdbae9c126837e40efe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "6284429508d849bd8259460913efc250": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -4083,6 +4528,30 @@ "width": null } }, + "6a8be136bafe40eea3430dda4063e6db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f28c1b9dee064db99c389beb98306f86", + "IPY_MODEL_b2a5550cd6474de7a46eab6a973305e0", + "IPY_MODEL_a4e9b7b28055406c9569e585296850c6" + ], + "layout": "IPY_MODEL_ac534b02efb34100b53999031767e8a3", + "tabbable": null, + "tooltip": null + } + }, "6be493d86857493190ee47a08c04ff40": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -4135,6 +4604,59 @@ "width": null } }, + "6fe78cfd377b4c10a626588f46a569cf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "760feb714cc54846a52fc399703891d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -4350,6 +4872,59 @@ "width": null } }, + "814d3f2b7212461ca51f8635b5106783": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "82e0dbe1328a4c54807932984e0c4efb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -4472,6 +5047,85 @@ "value": 73546 } }, + "8cfa8c0a28f549c19649ec9b390aa528": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e58d795d528405f8d1c48bfc2afe399": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c5f0ba4cda014a63a99ecc989f72f731", + "max": 67349, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_44803ba97fd54ceab2afe0555e21dfe8", + "tabbable": null, + "tooltip": null, + "value": 67349 + } + }, "8f2c2b10e21e42569ef5396e42c65e30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -4644,6 +5298,59 @@ "value": " 28.2M/? [00:00<00:00, 56.9MB/s]" } }, + "95ad5a87c66f405599a710b8a5fa0a9d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "96c6874b9bd045a5bc67596b2ab04df2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -4711,6 +5418,59 @@ "value": "Downloading builder script: " } }, + "9ba620aa4e51456c9b3b2469c2c887c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "9cbec0a1fe3247ed8a46290df56756fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -4872,6 +5632,29 @@ "value": "Downloading data: " } }, + "a4e9b7b28055406c9569e585296850c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cfa8c0a28f549c19649ec9b390aa528", + "placeholder": "​", + "style": "IPY_MODEL_470b17af8c8442e49757dc4e385d16f0", + "tabbable": null, + "tooltip": null, + "value": " 798/872 [00:00<00:00, 7979.17 examples/s]" + } + }, "a56b058d910244588c1454b02c8cda8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -5131,6 +5914,59 @@ "width": null } }, + "ac534b02efb34100b53999031767e8a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "ad994aff0bf94c2ea4ac9aa8d5c067e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -5250,6 +6086,32 @@ "description_width": "" } }, + "b2a5550cd6474de7a46eab6a973305e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ec28fbc9433413f8355e0c976839a94", + "max": 872, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fab424da92b541cfac6b3bb05ee4e17b", + "tabbable": null, + "tooltip": null, + "value": 872 + } + }, "b37bd95afbe44cd196fc5ab2d52bccd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -5332,6 +6194,59 @@ "value": "Downloading data: " } }, + "b84af540de4741ceb206456d2f05fa4b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "be21476b15a14c0084712a9d5aedc22f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -5510,6 +6425,118 @@ "layout": "IPY_MODEL_a6431dfb76084a838d63849fa362de35" } }, + "c3f7a2bb90b44a21a43939f78914f9b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c5f0ba4cda014a63a99ecc989f72f731": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7aaa1fbd10942649c90044c0c901d99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c81f11a99b9d4d1d95533f24bea1d5ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_129488cadbb9477ca593ae106ee8e9f7", + "placeholder": "​", + "style": "IPY_MODEL_c7aaa1fbd10942649c90044c0c901d99", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, "c96613989db447b5acfb35cfef553145": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -5568,6 +6595,73 @@ "value": "Downloading metadata: " } }, + "cc8f1bc7322542828205777903530f1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cd5ec1bd9cf54dbfbfd577a096a9e588": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f37c66b863854588b7a8891720372dc6", + "placeholder": "​", + "style": "IPY_MODEL_f48c7243c49a43acac4d1ba3a6fe674f", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 50%" + } + }, + "d1ba6870db484696879f0d6e5d3a9d70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95ad5a87c66f405599a710b8a5fa0a9d", + "max": 1821, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_de103ee4780843db8502ebe64f5d2b28", + "tabbable": null, + "tooltip": null, + "value": 1821 + } + }, "d226d72577ea4cc299ed78c2fa99a486": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -5766,6 +6860,22 @@ "width": null } }, + "de103ee4780843db8502ebe64f5d2b28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, "ded6921a6b8140b3bcd59d0e7bbd7900": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -5787,6 +6897,29 @@ "value": " 7.97k/? [00:00<00:00, 244kB/s]" } }, + "dfee126a02ef4934a0f654a101dadc1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ba620aa4e51456c9b3b2469c2c887c3", + "placeholder": "​", + "style": "IPY_MODEL_cc8f1bc7322542828205777903530f1e", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 98%" + } + }, "e1f77bef878c4b0bbfac867c5a9eea98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -5808,6 +6941,29 @@ "value": " 7.89M/? [00:00<00:00, 41.2MB/s]" } }, + "e23212ae504e493a85e4b2524f0217e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4ca1b7b5868446da945574f4db4373b", + "placeholder": "​", + "style": "IPY_MODEL_f7070757d4784c8099ef7dd9bd280ed3", + "tabbable": null, + "tooltip": null, + "value": " 65772/67349 [00:03<00:00, 18334.90 examples/s]" + } + }, "e319f91c3ba841f99a9a1ca1c7b551f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", @@ -5832,6 +6988,32 @@ "value": 20005 } }, + "e4ce5cf6ea174583a14675a75d31992d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fe78cfd377b4c10a626588f46a569cf", + "max": 7439277, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2aa0f33b8d3a4bc7bedf3b66e06b62f0", + "tabbable": null, + "tooltip": null, + "value": 7439277 + } + }, "e556c049fbb24669a49b26c7f107e6a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -5884,6 +7066,29 @@ "width": null } }, + "e7405147ca374cc4998ca947be069652": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_428db79c8cd74257ad09539518a21835", + "placeholder": "​", + "style": "IPY_MODEL_3c95b6d54b294fe2a958056c463ce541", + "tabbable": null, + "tooltip": null, + "value": " 915/1821 [00:00<00:00, 9145.67 examples/s]" + } + }, "eb395373be244e6e8815087d5d32a801": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -5988,6 +7193,29 @@ "width": null } }, + "f28c1b9dee064db99c389beb98306f86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f9f744825e44fdbae9c126837e40efe", + "placeholder": "​", + "style": "IPY_MODEL_c3f7a2bb90b44a21a43939f78914f9b8", + "tabbable": null, + "tooltip": null, + "value": "Generating validation split: 92%" + } + }, "f307d9be05d24940b57d9edc82be8976": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", @@ -6040,1306 +7268,10 @@ "width": null } }, - "f4ec7bc190af4c9dbe6a5fc05fad4540": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bfbcfceca0444337ac6c4033a7734fc1", - "max": 3, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ad8132df42340c58f1375b1e52eb5bc", - "value": 3 - } - }, - "f74dfe0a3de64c3ea051e14fba9a04e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37d4912ed8ee4c0c9f0a9187bad156fd", - "IPY_MODEL_6284429508d849bd8259460913efc250", - "IPY_MODEL_e1f77bef878c4b0bbfac867c5a9eea98" - ], - "layout": "IPY_MODEL_20624397998c4e188b419c6267affb65" - } - }, - "feaf1f712b8e499db2558dc0fdd4261e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_62bdec145ccb48faa4fe5f51d2879732", - "placeholder": "​", - "style": "IPY_MODEL_c96613989db447b5acfb35cfef553145", - "value": "Extracting data files: 100%" - } - }, - "16fba9eb9e4542bc9d34eca00d71cc14": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c81f11a99b9d4d1d95533f24bea1d5ac", - "IPY_MODEL_e4ce5cf6ea174583a14675a75d31992d", - "IPY_MODEL_0c8473019e434db0ae34d58b69605a69" - ], - "layout": "IPY_MODEL_814d3f2b7212461ca51f8635b5106783", - "tabbable": null, - "tooltip": null - } - }, - "c81f11a99b9d4d1d95533f24bea1d5ac": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_129488cadbb9477ca593ae106ee8e9f7", - "placeholder": "​", - "style": "IPY_MODEL_c7aaa1fbd10942649c90044c0c901d99", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "e4ce5cf6ea174583a14675a75d31992d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6fe78cfd377b4c10a626588f46a569cf", - "max": 7439277, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2aa0f33b8d3a4bc7bedf3b66e06b62f0", - "tabbable": null, - "tooltip": null, - "value": 7439277 - } - }, - "0c8473019e434db0ae34d58b69605a69": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1794a34790b647b3a8a845c55e5e0744", - "placeholder": "​", - "style": "IPY_MODEL_13d813116e1846a3a0e42a5e8423f80e", - "tabbable": null, - "tooltip": null, - "value": " 7.44M/7.44M [00:00<00:00, 13.9MB/s]" - } - }, - "814d3f2b7212461ca51f8635b5106783": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "129488cadbb9477ca593ae106ee8e9f7": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c7aaa1fbd10942649c90044c0c901d99": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6fe78cfd377b4c10a626588f46a569cf": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2aa0f33b8d3a4bc7bedf3b66e06b62f0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1794a34790b647b3a8a845c55e5e0744": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "13d813116e1846a3a0e42a5e8423f80e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2aa02213244048fead33ea157c17837b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dfee126a02ef4934a0f654a101dadc1b", - "IPY_MODEL_8e58d795d528405f8d1c48bfc2afe399", - "IPY_MODEL_e23212ae504e493a85e4b2524f0217e1" - ], - "layout": "IPY_MODEL_b84af540de4741ceb206456d2f05fa4b", - "tabbable": null, - "tooltip": null - } - }, - "dfee126a02ef4934a0f654a101dadc1b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ba620aa4e51456c9b3b2469c2c887c3", - "placeholder": "​", - "style": "IPY_MODEL_cc8f1bc7322542828205777903530f1e", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 98%" - } - }, - "8e58d795d528405f8d1c48bfc2afe399": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5f0ba4cda014a63a99ecc989f72f731", - "max": 67349, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_44803ba97fd54ceab2afe0555e21dfe8", - "tabbable": null, - "tooltip": null, - "value": 67349 - } - }, - "e23212ae504e493a85e4b2524f0217e1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4ca1b7b5868446da945574f4db4373b", - "placeholder": "​", - "style": "IPY_MODEL_f7070757d4784c8099ef7dd9bd280ed3", - "tabbable": null, - "tooltip": null, - "value": " 65772/67349 [00:03<00:00, 18334.90 examples/s]" - } - }, - "b84af540de4741ceb206456d2f05fa4b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9ba620aa4e51456c9b3b2469c2c887c3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cc8f1bc7322542828205777903530f1e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c5f0ba4cda014a63a99ecc989f72f731": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "44803ba97fd54ceab2afe0555e21dfe8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f4ca1b7b5868446da945574f4db4373b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f7070757d4784c8099ef7dd9bd280ed3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a8be136bafe40eea3430dda4063e6db": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f28c1b9dee064db99c389beb98306f86", - "IPY_MODEL_b2a5550cd6474de7a46eab6a973305e0", - "IPY_MODEL_a4e9b7b28055406c9569e585296850c6" - ], - "layout": "IPY_MODEL_ac534b02efb34100b53999031767e8a3", - "tabbable": null, - "tooltip": null - } - }, - "f28c1b9dee064db99c389beb98306f86": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f9f744825e44fdbae9c126837e40efe", - "placeholder": "​", - "style": "IPY_MODEL_c3f7a2bb90b44a21a43939f78914f9b8", - "tabbable": null, - "tooltip": null, - "value": "Generating validation split: 92%" - } - }, - "b2a5550cd6474de7a46eab6a973305e0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4ec28fbc9433413f8355e0c976839a94", - "max": 872, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_fab424da92b541cfac6b3bb05ee4e17b", - "tabbable": null, - "tooltip": null, - "value": 872 - } - }, - "a4e9b7b28055406c9569e585296850c6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8cfa8c0a28f549c19649ec9b390aa528", - "placeholder": "​", - "style": "IPY_MODEL_470b17af8c8442e49757dc4e385d16f0", - "tabbable": null, - "tooltip": null, - "value": " 798/872 [00:00<00:00, 7979.17 examples/s]" - } - }, - "ac534b02efb34100b53999031767e8a3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5f9f744825e44fdbae9c126837e40efe": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c3f7a2bb90b44a21a43939f78914f9b8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ec28fbc9433413f8355e0c976839a94": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fab424da92b541cfac6b3bb05ee4e17b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8cfa8c0a28f549c19649ec9b390aa528": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "470b17af8c8442e49757dc4e385d16f0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2c31d2eb9ae44ffbb0f02ad1b1e7937a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd5ec1bd9cf54dbfbfd577a096a9e588", - "IPY_MODEL_d1ba6870db484696879f0d6e5d3a9d70", - "IPY_MODEL_e7405147ca374cc4998ca947be069652" - ], - "layout": "IPY_MODEL_fb72bbb82aec4184a8e0a510177433cf", - "tabbable": null, - "tooltip": null - } - }, - "cd5ec1bd9cf54dbfbfd577a096a9e588": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f37c66b863854588b7a8891720372dc6", - "placeholder": "​", - "style": "IPY_MODEL_f48c7243c49a43acac4d1ba3a6fe674f", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 50%" - } - }, - "d1ba6870db484696879f0d6e5d3a9d70": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_95ad5a87c66f405599a710b8a5fa0a9d", - "max": 1821, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_de103ee4780843db8502ebe64f5d2b28", - "tabbable": null, - "tooltip": null, - "value": 1821 - } - }, - "e7405147ca374cc4998ca947be069652": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "2.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_428db79c8cd74257ad09539518a21835", - "placeholder": "​", - "style": "IPY_MODEL_3c95b6d54b294fe2a958056c463ce541", - "tabbable": null, - "tooltip": null, - "value": " 915/1821 [00:00<00:00, 9145.67 examples/s]" - } - }, - "fb72bbb82aec4184a8e0a510177433cf": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "2.0.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, "f37c66b863854588b7a8891720372dc6": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -7391,8 +7323,8 @@ }, "f48c7243c49a43acac4d1ba3a6fe674f": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -7407,10 +7339,10 @@ "text_color": null } }, - "95ad5a87c66f405599a710b8a5fa0a9d": { + "f4ca1b7b5868446da945574f4db4373b": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -7460,10 +7392,74 @@ "width": null } }, - "de103ee4780843db8502ebe64f5d2b28": { + "f4ec7bc190af4c9dbe6a5fc05fad4540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bfbcfceca0444337ac6c4033a7734fc1", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ad8132df42340c58f1375b1e52eb5bc", + "value": 3 + } + }, + "f7070757d4784c8099ef7dd9bd280ed3": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f74dfe0a3de64c3ea051e14fba9a04e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37d4912ed8ee4c0c9f0a9187bad156fd", + "IPY_MODEL_6284429508d849bd8259460913efc250", + "IPY_MODEL_e1f77bef878c4b0bbfac867c5a9eea98" + ], + "layout": "IPY_MODEL_20624397998c4e188b419c6267affb65" + } + }, + "fab424da92b541cfac6b3bb05ee4e17b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -7476,10 +7472,10 @@ "description_width": "" } }, - "428db79c8cd74257ad09539518a21835": { + "fb72bbb82aec4184a8e0a510177433cf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -7529,22 +7525,25 @@ "width": null } }, - "3c95b6d54b294fe2a958056c463ce541": { + "feaf1f712b8e499db2558dc0fdd4261e": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLStyleModel", - "model_module_version": "2.0.0", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62bdec145ccb48faa4fe5f51d2879732", + "placeholder": "​", + "style": "IPY_MODEL_c96613989db447b5acfb35cfef553145", + "value": "Extracting data files: 100%" } } } diff --git a/notebook/integrate_openai.ipynb b/notebook/integrate_openai.ipynb index b8b5ae7ec..5d74ae552 100644 --- a/notebook/integrate_openai.ipynb +++ b/notebook/integrate_openai.ipynb @@ -30,10 +30,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:52.317406Z", - "iopub.status.busy": "2023-02-13T23:40:52.316561Z", - "iopub.status.idle": "2023-02-13T23:40:52.321193Z", - "shell.execute_reply": "2023-02-13T23:40:52.320628Z" + "iopub.execute_input": "2023-02-24T23:25:36.910966Z", + "iopub.status.busy": "2023-02-24T23:25:36.910473Z", + "iopub.status.idle": "2023-02-24T23:25:36.914554Z", + "shell.execute_reply": "2023-02-24T23:25:36.914030Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:52.324240Z", - "iopub.status.busy": "2023-02-13T23:40:52.323783Z", - "iopub.status.idle": "2023-02-13T23:40:52.330570Z", - "shell.execute_reply": "2023-02-13T23:40:52.329750Z" + "iopub.execute_input": "2023-02-24T23:25:36.917301Z", + "iopub.status.busy": "2023-02-24T23:25:36.917011Z", + "iopub.status.idle": "2023-02-24T23:25:36.923156Z", + "shell.execute_reply": "2023-02-24T23:25:36.922619Z" } }, "outputs": [], @@ -81,10 +81,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:52.333547Z", - "iopub.status.busy": "2023-02-13T23:40:52.333249Z", - "iopub.status.idle": "2023-02-13T23:40:52.336508Z", - "shell.execute_reply": "2023-02-13T23:40:52.335858Z" + "iopub.execute_input": "2023-02-24T23:25:36.925804Z", + "iopub.status.busy": "2023-02-24T23:25:36.925423Z", + "iopub.status.idle": "2023-02-24T23:25:36.928191Z", + "shell.execute_reply": "2023-02-24T23:25:36.927673Z" } }, "outputs": [], @@ -109,10 +109,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:52.339977Z", - "iopub.status.busy": "2023-02-13T23:40:52.339556Z", - "iopub.status.idle": "2023-02-13T23:40:54.603349Z", - "shell.execute_reply": "2023-02-13T23:40:54.602630Z" + "iopub.execute_input": "2023-02-24T23:25:36.931255Z", + "iopub.status.busy": "2023-02-24T23:25:36.930838Z", + "iopub.status.idle": "2023-02-24T23:25:39.148799Z", + "shell.execute_reply": "2023-02-24T23:25:39.148113Z" } }, "outputs": [ @@ -126,7 +126,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "454146d0f7224f038689031002906e6f", + "model_id": "35cd066a31b242bb87b2c106ee72e5f2", "version_major": 2, "version_minor": 0 }, @@ -186,10 +186,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:54.607152Z", - "iopub.status.busy": "2023-02-13T23:40:54.606441Z", - "iopub.status.idle": "2023-02-13T23:40:54.610504Z", - "shell.execute_reply": "2023-02-13T23:40:54.609759Z" + "iopub.execute_input": "2023-02-24T23:25:39.152156Z", + "iopub.status.busy": "2023-02-24T23:25:39.151531Z", + "iopub.status.idle": "2023-02-24T23:25:39.155313Z", + "shell.execute_reply": "2023-02-24T23:25:39.154731Z" }, "slideshow": { "slide_type": "subslide" @@ -238,10 +238,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:54.613590Z", - "iopub.status.busy": "2023-02-13T23:40:54.613168Z", - "iopub.status.idle": "2023-02-13T23:40:54.616873Z", - "shell.execute_reply": "2023-02-13T23:40:54.616193Z" + "iopub.execute_input": "2023-02-24T23:25:39.158398Z", + "iopub.status.busy": "2023-02-24T23:25:39.157766Z", + "iopub.status.idle": "2023-02-24T23:25:39.161396Z", + "shell.execute_reply": "2023-02-24T23:25:39.160797Z" } }, "outputs": [ @@ -287,10 +287,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:54.619618Z", - "iopub.status.busy": "2023-02-13T23:40:54.619218Z", - "iopub.status.idle": "2023-02-13T23:40:54.624272Z", - "shell.execute_reply": "2023-02-13T23:40:54.623664Z" + "iopub.execute_input": "2023-02-24T23:25:39.164187Z", + "iopub.status.busy": "2023-02-24T23:25:39.163867Z", + "iopub.status.idle": "2023-02-24T23:25:39.169009Z", + "shell.execute_reply": "2023-02-24T23:25:39.168427Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:54.626998Z", - "iopub.status.busy": "2023-02-13T23:40:54.626593Z", - "iopub.status.idle": "2023-02-13T23:40:54.631383Z", - "shell.execute_reply": "2023-02-13T23:40:54.630770Z" + "iopub.execute_input": "2023-02-24T23:25:39.171752Z", + "iopub.status.busy": "2023-02-24T23:25:39.171347Z", + "iopub.status.idle": "2023-02-24T23:25:39.176343Z", + "shell.execute_reply": "2023-02-24T23:25:39.175510Z" } }, "outputs": [], @@ -391,10 +391,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:54.634335Z", - "iopub.status.busy": "2023-02-13T23:40:54.633929Z", - "iopub.status.idle": "2023-02-13T23:40:56.105700Z", - "shell.execute_reply": "2023-02-13T23:40:56.105085Z" + "iopub.execute_input": "2023-02-24T23:25:39.179030Z", + "iopub.status.busy": "2023-02-24T23:25:39.178624Z", + "iopub.status.idle": "2023-02-24T23:25:40.584410Z", + "shell.execute_reply": "2023-02-24T23:25:40.583802Z" }, "slideshow": { "slide_type": "slide" @@ -418,10 +418,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:56.109177Z", - "iopub.status.busy": "2023-02-13T23:40:56.108624Z", - "iopub.status.idle": "2023-02-13T23:40:56.112651Z", - "shell.execute_reply": "2023-02-13T23:40:56.112076Z" + "iopub.execute_input": "2023-02-24T23:25:40.587815Z", + "iopub.status.busy": "2023-02-24T23:25:40.587283Z", + "iopub.status.idle": "2023-02-24T23:25:40.590826Z", + "shell.execute_reply": "2023-02-24T23:25:40.590158Z" }, "slideshow": { "slide_type": "slide" @@ -483,10 +483,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:40:56.115383Z", - "iopub.status.busy": "2023-02-13T23:40:56.114975Z", - "iopub.status.idle": "2023-02-13T23:41:55.045654Z", - "shell.execute_reply": "2023-02-13T23:41:55.044973Z" + "iopub.execute_input": "2023-02-24T23:25:40.593603Z", + "iopub.status.busy": "2023-02-24T23:25:40.593269Z", + "iopub.status.idle": "2023-02-24T23:26:38.349191Z", + "shell.execute_reply": "2023-02-24T23:26:38.348392Z" } }, "outputs": [ @@ -494,119 +494,119 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m[I 2023-02-13 23:40:56,159]\u001b[0m A new study created in memory with name: optuna\u001b[0m\n" + "\u001b[32m[I 2023-02-24 23:25:40,643]\u001b[0m A new study created in memory with name: optuna\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m[I 2023-02-13 23:40:56,161]\u001b[0m A new study created in memory with name: optuna\u001b[0m\n" + "\u001b[32m[I 2023-02-24 23:25:40,646]\u001b[0m A new study created in memory with name: optuna\u001b[0m\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:40:56] {806} INFO - trial 1 config: {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}\n" + "[flaml.tune.tune: 02-24 23:25:40] {811} INFO - trial 1 config: {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:40:59] {215} INFO - result: {'expected_success': 0.6, 'success': 0.6, 'total_cost': 0.4624999999999999, 'cost': 0.4624999999999999, 'inference_cost': 0.023125, 'training_iteration': 0, 'config': {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}, 'config/model': 'code-davinci-002', 'config/temperature_or_top_p': {'temperature': 0.36865945026811975}, 'config/max_tokens': 347, 'config/n': 1, 'config/prompt': 1, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 3.7016141414642334}\n" + "[flaml.tune.tune: 02-24 23:25:44] {215} INFO - result: {'expected_success': 0.6, 'success': 0.6, 'total_cost': 0.4624999999999999, 'cost': 0.4624999999999999, 'inference_cost': 0.023125, 'training_iteration': 0, 'config': {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}, 'config/model': 'code-davinci-002', 'config/temperature_or_top_p': {'temperature': 0.36865945026811975}, 'config/max_tokens': 347, 'config/n': 1, 'config/prompt': 1, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 3.687161445617676}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:40:59] {806} INFO - trial 2 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}\n" + "[flaml.tune.tune: 02-24 23:25:44] {811} INFO - trial 2 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:00] {215} INFO - result: {'expected_success': 0.35, 'success': 0.35, 'total_cost': 0.5671159999999997, 'cost': 0.104616, 'inference_cost': 0.0052308, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'temperature': 0.36865945026811975}, 'config/max_tokens': 347, 'config/n': 1, 'config/prompt': 1, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 0.673302412033081}\n" + "[flaml.tune.tune: 02-24 23:25:45] {215} INFO - result: {'expected_success': 0.35, 'success': 0.35, 'total_cost': 0.5671159999999997, 'cost': 0.104616, 'inference_cost': 0.0052308, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.36865945026811975}, 'max_tokens': 347, 'n': 1, 'prompt': 1, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'temperature': 0.36865945026811975}, 'config/max_tokens': 347, 'config/n': 1, 'config/prompt': 1, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 0.6666913032531738}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:00] {806} INFO - trial 3 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.4985070123025904}, 'max_tokens': 97, 'n': 20, 'prompt': 0, 'stop': 0}\n" + "[flaml.tune.tune: 02-24 23:25:45] {811} INFO - trial 3 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.4985070123025904}, 'max_tokens': 97, 'n': 20, 'prompt': 0, 'stop': 0}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:17] {215} INFO - result: {'expected_success': 0.5080706992649381, 'success': 0.55, 'total_cost': 1.1848999999999996, 'cost': 0.617784, 'inference_cost': 0.0287676, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.4985070123025904}, 'max_tokens': 97, 'n': 20, 'prompt': 0, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'top_p': 0.4985070123025904}, 'config/max_tokens': 97, 'config/n': 20, 'config/prompt': 0, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 16.56331181526184}\n" + "[flaml.tune.tune: 02-24 23:26:01] {215} INFO - result: {'expected_success': 0.5080706992649381, 'success': 0.55, 'total_cost': 1.1424679999999998, 'cost': 0.575352, 'inference_cost': 0.0287676, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.4985070123025904}, 'max_tokens': 97, 'n': 20, 'prompt': 0, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'top_p': 0.4985070123025904}, 'config/max_tokens': 97, 'config/n': 20, 'config/prompt': 0, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 16.66586470603943}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:17] {806} INFO - trial 4 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.6125260668293881}, 'max_tokens': 433, 'n': 29, 'prompt': 0, 'stop': 0}\n" + "[flaml.tune.tune: 02-24 23:26:01] {811} INFO - trial 4 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.6125260668293881}, 'max_tokens': 433, 'n': 29, 'prompt': 0, 'stop': 0}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:51] {215} INFO - result: {'expected_success': 0.6186627404336135, 'success': 0.65, 'total_cost': 2.4239719999999987, 'cost': 1.2390720000000002, 'inference_cost': 0.059620799999999995, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.6125260668293881}, 'max_tokens': 433, 'n': 29, 'prompt': 0, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'top_p': 0.6125260668293881}, 'config/max_tokens': 433, 'config/n': 29, 'config/prompt': 0, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 34.57707595825195}\n" + "[flaml.tune.tune: 02-24 23:26:38] {215} INFO - result: {'expected_success': 0.6186627404336135, 'success': 0.65, 'total_cost': 2.3693479999999987, 'cost': 1.2268800000000002, 'inference_cost': 0.059620799999999995, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.6125260668293881}, 'max_tokens': 433, 'n': 29, 'prompt': 0, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'top_p': 0.6125260668293881}, 'config/max_tokens': 433, 'config/n': 29, 'config/prompt': 0, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 36.605130434036255}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:51] {806} INFO - trial 5 config: {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.6177669784693172}, 'max_tokens': 231, 'n': 65, 'prompt': 3, 'stop': 0}\n" + "[flaml.tune.tune: 02-24 23:26:38] {811} INFO - trial 5 config: {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.6177669784693172}, 'max_tokens': 231, 'n': 65, 'prompt': 3, 'stop': 0}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:51] {215} INFO - result: {'expected_success': 0, 'total_cost': 2.6356719999999987, 'cost': 0.2117, 'training_iteration': 0, 'config': {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.6177669784693172}, 'max_tokens': 231, 'n': 65, 'prompt': 3, 'stop': 0}, 'config/model': 'code-davinci-002', 'config/temperature_or_top_p': {'temperature': 0.6177669784693172}, 'config/max_tokens': 231, 'config/n': 65, 'config/prompt': 3, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 0.0022132396697998047}\n" + "[flaml.tune.tune: 02-24 23:26:38] {215} INFO - result: {'expected_success': 0, 'total_cost': 2.5295479999999984, 'cost': 0.1602, 'training_iteration': 0, 'config': {'model': 'code-davinci-002', 'temperature_or_top_p': {'temperature': 0.6177669784693172}, 'max_tokens': 231, 'n': 65, 'prompt': 3, 'stop': 0}, 'config/model': 'code-davinci-002', 'config/temperature_or_top_p': {'temperature': 0.6177669784693172}, 'config/max_tokens': 231, 'config/n': 65, 'config/prompt': 3, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 0.0020499229431152344}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:51] {806} INFO - trial 6 config: {'model': 'code-davinci-002', 'max_tokens': 263, 'n': 41, 'prompt': 0, 'stop': 0, 'temperature_or_top_p': {'top_p': 0.49834557213253655}}\n" + "[flaml.tune.tune: 02-24 23:26:38] {811} INFO - trial 6 config: {'model': 'code-davinci-002', 'max_tokens': 263, 'n': 41, 'prompt': 0, 'stop': 0, 'temperature_or_top_p': {'top_p': 0.49834557213253655}}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:54] {215} INFO - result: {'expected_success': 0, 'total_cost': 3.003171999999999, 'cost': 0.3675, 'training_iteration': 0, 'config': {'model': 'code-davinci-002', 'max_tokens': 263, 'n': 41, 'prompt': 0, 'stop': 0, 'temperature_or_top_p': {'top_p': 0.49834557213253655}}, 'config/model': 'code-davinci-002', 'config/max_tokens': 263, 'config/n': 41, 'config/prompt': 0, 'config/stop': 0, 'config/temperature_or_top_p': {'top_p': 0.49834557213253655}, 'experiment_tag': 'exp', 'time_total_s': 3.3002660274505615}\n" + "[flaml.tune.tune: 02-24 23:26:38] {215} INFO - result: {'expected_success': 0, 'total_cost': 2.8578479999999984, 'cost': 0.32830000000000004, 'training_iteration': 0, 'config': {'model': 'code-davinci-002', 'max_tokens': 263, 'n': 41, 'prompt': 0, 'stop': 0, 'temperature_or_top_p': {'top_p': 0.49834557213253655}}, 'config/model': 'code-davinci-002', 'config/max_tokens': 263, 'config/n': 41, 'config/prompt': 0, 'config/stop': 0, 'config/temperature_or_top_p': {'top_p': 0.49834557213253655}, 'experiment_tag': 'exp', 'time_total_s': 0.002808809280395508}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:55] {806} INFO - trial 7 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.8286813263076767}, 'max_tokens': 57, 'n': 63, 'prompt': 3, 'stop': 0}\n" + "[flaml.tune.tune: 02-24 23:26:38] {811} INFO - trial 7 config: {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.8286813263076767}, 'max_tokens': 57, 'n': 63, 'prompt': 3, 'stop': 0}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:55] {215} INFO - result: {'expected_success': 0, 'total_cost': 4.046379999999999, 'cost': 1.043208, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.8286813263076767}, 'max_tokens': 57, 'n': 63, 'prompt': 3, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'temperature': 0.8286813263076767}, 'config/max_tokens': 57, 'config/n': 63, 'config/prompt': 3, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 0.007852792739868164}\n" + "[flaml.tune.tune: 02-24 23:26:38] {215} INFO - result: {'expected_success': 0, 'total_cost': 4.028831999999999, 'cost': 1.170984, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'temperature': 0.8286813263076767}, 'max_tokens': 57, 'n': 63, 'prompt': 3, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'temperature': 0.8286813263076767}, 'config/max_tokens': 57, 'config/n': 63, 'config/prompt': 3, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 0.015198230743408203}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[flaml.tune.tune: 02-13 23:41:55] {827} WARNING - fail to sample a trial for 100 times in a row, stopping.\n" + "[flaml.tune.tune: 02-24 23:26:38] {834} WARNING - fail to sample a trial for 100 times in a row, stopping.\n" ] } ], @@ -656,10 +656,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:41:55.049204Z", - "iopub.status.busy": "2023-02-13T23:41:55.048871Z", - "iopub.status.idle": "2023-02-13T23:41:55.053284Z", - "shell.execute_reply": "2023-02-13T23:41:55.052574Z" + "iopub.execute_input": "2023-02-24T23:26:38.352710Z", + "iopub.status.busy": "2023-02-24T23:26:38.352378Z", + "iopub.status.idle": "2023-02-24T23:26:38.356939Z", + "shell.execute_reply": "2023-02-24T23:26:38.356217Z" } }, "outputs": [ @@ -668,7 +668,7 @@ "output_type": "stream", "text": [ "optimized config {'model': 'code-cushman-001', 'max_tokens': 433, 'n': 29, 'prompt': '{prompt}', 'stop': ['\\nclass', '\\ndef', '\\nif', '\\nprint'], 'top_p': 0.6125260668293881}\n", - "best result on tuning data {'expected_success': 0.6186627404336135, 'success': 0.65, 'total_cost': 2.4239719999999987, 'cost': 1.2390720000000002, 'inference_cost': 0.059620799999999995, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.6125260668293881}, 'max_tokens': 433, 'n': 29, 'prompt': 0, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'top_p': 0.6125260668293881}, 'config/max_tokens': 433, 'config/n': 29, 'config/prompt': 0, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 34.57707595825195}\n" + "best result on tuning data {'expected_success': 0.6186627404336135, 'success': 0.65, 'total_cost': 2.3693479999999987, 'cost': 1.2268800000000002, 'inference_cost': 0.059620799999999995, 'training_iteration': 0, 'config': {'model': 'code-cushman-001', 'temperature_or_top_p': {'top_p': 0.6125260668293881}, 'max_tokens': 433, 'n': 29, 'prompt': 0, 'stop': 0}, 'config/model': 'code-cushman-001', 'config/temperature_or_top_p': {'top_p': 0.6125260668293881}, 'config/max_tokens': 433, 'config/n': 29, 'config/prompt': 0, 'config/stop': 0, 'experiment_tag': 'exp', 'time_total_s': 36.605130434036255}\n" ] } ], @@ -696,10 +696,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:41:55.056205Z", - "iopub.status.busy": "2023-02-13T23:41:55.055631Z", - "iopub.status.idle": "2023-02-13T23:41:56.039259Z", - "shell.execute_reply": "2023-02-13T23:41:56.038427Z" + "iopub.execute_input": "2023-02-24T23:26:38.359902Z", + "iopub.status.busy": "2023-02-24T23:26:38.359506Z", + "iopub.status.idle": "2023-02-24T23:26:39.343921Z", + "shell.execute_reply": "2023-02-24T23:26:39.343051Z" }, "slideshow": { "slide_type": "subslide" @@ -921,7 +921,7 @@ "source": [ "### Evaluate the success rate on the test data\n", "\n", - "You can use flaml's `oai.Completion.eval` to evaluate the performance of an entire dataset with the tuned config. To do that you need to set `oai.Completion.data` to the data to evaluate. The following code will take a while to evaluate all the 144 test data instances. Compared to the baseline success rate (0.46) on the [HELM benchmark](https://crfm.stanford.edu/helm/latest/?group=code_humaneval), the tuned config has a success rate of 0.68. It can be further improved if the inference budget and optimization budget are further increased." + "You can use flaml's `oai.Completion.eval` to evaluate the performance of an entire dataset with the tuned config. To do that you need to set `oai.Completion.data` to the data to evaluate. The following code will take a while to evaluate all the 144 test data instances. Compared to the baseline success rate (46%) on the [HELM benchmark](https://crfm.stanford.edu/helm/latest/?group=code_humaneval), the tuned config has a success rate of 68%. It can be further improved if the inference budget and optimization budget are further increased." ] }, { @@ -929,10 +929,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-02-13T23:41:56.042764Z", - "iopub.status.busy": "2023-02-13T23:41:56.042086Z", - "iopub.status.idle": "2023-02-13T23:53:05.597643Z", - "shell.execute_reply": "2023-02-13T23:53:05.596603Z" + "iopub.execute_input": "2023-02-24T23:26:39.347295Z", + "iopub.status.busy": "2023-02-24T23:26:39.346994Z", + "iopub.status.idle": "2023-02-24T23:29:27.160335Z", + "shell.execute_reply": "2023-02-24T23:29:27.159519Z" } }, "outputs": [ @@ -940,7 +940,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'expected_success': 0.6364503360372493, 'success': 0.6805555555555556, 'total_cost': 12.227739999999997, 'cost': 8.181360000000003, 'inference_cost': 0.056815}\n" + "{'expected_success': 0.6364503360372493, 'success': 0.6805555555555556, 'total_cost': 12.210191999999997, 'cost': 8.181360000000003, 'inference_cost': 0.056815}\n" ] } ], @@ -977,60 +977,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2d910cfd2d2a4fc49fc30fbbdc5576a7": { - "model_module": "@jupyter-widgets/base", + "24dd93300e0442788ee6cc1310e5bf14": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "454146d0f7224f038689031002906e6f": { + "35cd066a31b242bb87b2c106ee72e5f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1045,95 +1010,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26", - "IPY_MODEL_577e1e3cc4db4942b0883577b3b52755", - "IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45" + "IPY_MODEL_8e7ee7687a99410d88a98a74ecfcea99", + "IPY_MODEL_421e02a11a974b40b3ddb75382b3b640", + "IPY_MODEL_77db9797e78b49438d21c5c8da34b4cb" ], - "layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555", + "layout": "IPY_MODEL_47d3046236a54b0e8f9ae455a82c7e0b", "tabbable": null, "tooltip": null } }, - "577e1e3cc4db4942b0883577b3b52755": { + "3d5d106a38954af2bb3bde5777702f4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62", - "tabbable": null, - "tooltip": null, - "value": 1 - } - }, - "6086462a12d54bafa59d3c4566f06cb2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "74a6ba0c3cbc4051be0a83e152fe1e62": { + "3e1ebb31412443b0bca86a301cbdac11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1149,66 +1053,33 @@ "description_width": "" } }, - "7d3f3d9e15894d05a4d188ff4f466554": { + "421e02a11a974b40b3ddb75382b3b640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b40bdfb1ac1d4cffb7cefcb870c64d45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8", - "placeholder": "​", - "style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466", + "layout": "IPY_MODEL_e6398d4027c9459a97965b9d91ae484f", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3e1ebb31412443b0bca86a301cbdac11", "tabbable": null, "tooltip": null, - "value": " 1/1 [00:00<00:00, 44.69it/s]" + "value": 1 } }, - "ca245376fd9f4354af6b2befe4af4466": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc83c7bff2f241309537a8119dfc7555": { + "47d3046236a54b0e8f9ae455a82c7e0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1261,7 +1132,60 @@ "width": null } }, - "e4ae2b6f5a974fd4bafb6abb9d12ff26": { + "754800f7feb04acea977696e4787d1ff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "77db9797e78b49438d21c5c8da34b4cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1276,15 +1200,91 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2", + "layout": "IPY_MODEL_7b6c4e1c11e249409a1edcd63be450d8", "placeholder": "​", - "style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554", + "style": "IPY_MODEL_3d5d106a38954af2bb3bde5777702f4e", + "tabbable": null, + "tooltip": null, + "value": " 1/1 [00:00<00:00, 44.40it/s]" + } + }, + "7b6c4e1c11e249409a1edcd63be450d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e7ee7687a99410d88a98a74ecfcea99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_754800f7feb04acea977696e4787d1ff", + "placeholder": "​", + "style": "IPY_MODEL_24dd93300e0442788ee6cc1310e5bf14", "tabbable": null, "tooltip": null, "value": "100%" } }, - "f1355871cc6f4dd4b50d9df5af20e5c8": { + "e6398d4027c9459a97965b9d91ae484f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/setup.py b/setup.py index 86fea18b9..56bb955a8 100644 --- a/setup.py +++ b/setup.py @@ -92,7 +92,14 @@ setuptools.setup( "vw": [ "vowpalwabbit>=8.10.0, <9.0.0", ], - "nlp": [ + "hf": [ + "transformers[torch]==4.26", + "datasets", + "nltk", + "rouge_score", + "seqeval", + ], + "nlp": [ # for backward compatibility; hf is the new option name "transformers[torch]==4.26", "datasets", "nltk", diff --git a/website/docs/Examples/AutoML-NLP.md b/website/docs/Examples/AutoML-NLP.md index 7af14d908..409ac8872 100644 --- a/website/docs/Examples/AutoML-NLP.md +++ b/website/docs/Examples/AutoML-NLP.md @@ -2,9 +2,9 @@ ### Requirements -This example requires GPU. Install the [nlp] option: +This example requires GPU. Install the [hf] option: ```python -pip install "flaml[nlp]" +pip install "flaml[hf]" ``` ### A simple sequence classification example diff --git a/website/docs/Getting-Started.md b/website/docs/Getting-Started.md index e3e828cbc..c2d498ae9 100644 --- a/website/docs/Getting-Started.md +++ b/website/docs/Getting-Started.md @@ -3,17 +3,17 @@ FLAML is a lightweight Python library that finds accurate machine -learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. +learning models automatically, efficiently and economically. It frees users from selecting models and hyperparameters for each model. ### Main Features -1. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. +1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including large language models such as the OpenAI GPT-3 models. 2. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code). Users can customize only when and what they need to, and leave the rest to the library. 3. It supports fast and economical automatic tuning, capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective hyperparameter optimization](Use-Cases/Tune-User-Defined-Function#hyperparameter-optimization-algorithm) -and learner selection method invented by Microsoft Research. +and model selection method invented by Microsoft Research, and many followup [research studies](Research). ### Quickstart diff --git a/website/docs/Installation.md b/website/docs/Installation.md index 8a4d4dc27..92285a703 100644 --- a/website/docs/Installation.md +++ b/website/docs/Installation.md @@ -24,8 +24,11 @@ install flaml with the [notebook] option: pip install flaml[notebook] ``` -#### Extra learners - +#### Extra learners/models +* openai models +```bash +pip install flaml[openai] +``` * catboost ```bash pip install flaml[catboost] @@ -38,10 +41,9 @@ pip install flaml[vw] ```bash pip install flaml[forecast] ``` - -* natural language processing: transformers +* huggingface transformers ```bash -pip install flaml[nlp] +pip install flaml[hf] ``` #### Distributed tuning