mirror of
https://github.com/microsoft/FLAML.git
synced 2026-02-09 02:09:16 +08:00
Integrate multivariate time series forecasting (#254)
* Integrate multivariate time series forecasting, now supports continuous and categorical variables - update data.py to transform time series data - update search space - update documentations to reflect changes - update test_forecast.py - rename 'forecast' task to 'ts_forecast' task * update automl.py and test_forecast.py * update forecast notebook * update README.md and setup.py * update ml.py and test_forecast.py - make "ds" and "y" constant variables * replace constants with constant variables * bump version to 0.7.0 * update setup.py - support 'forecast' and 'ts_forecast' * update automl.py and data.py - support 'forecast' and 'ts_forecast' tasks
This commit is contained in:
@@ -33,7 +33,7 @@ from .model import (
|
||||
ARIMA,
|
||||
SARIMAX,
|
||||
)
|
||||
from .data import CLASSIFICATION, group_counts
|
||||
from .data import CLASSIFICATION, group_counts, TS_FORECAST, TS_VALUE_COL
|
||||
|
||||
import logging
|
||||
|
||||
@@ -313,8 +313,8 @@ def evaluate_model_CV(
|
||||
groups = kf.groups
|
||||
kf = kf.split(X_train_split, y_train_split, groups)
|
||||
shuffle = False
|
||||
elif isinstance(kf, TimeSeriesSplit) and task == "forecast":
|
||||
y_train_all = pd.DataFrame(y_train_all, columns=["y"])
|
||||
elif isinstance(kf, TimeSeriesSplit) and task == TS_FORECAST:
|
||||
y_train_all = pd.DataFrame(y_train_all, columns=[TS_VALUE_COL])
|
||||
train = X_train_all.join(y_train_all)
|
||||
kf = kf.split(train)
|
||||
shuffle = False
|
||||
|
||||
Reference in New Issue
Block a user