Files
FLAML/test/automl/test_custom_hp.py
Copilot 46a406edd4 Add objective parameter to LGBMEstimator search space (#1474)
* Initial plan

* Add objective parameter to LGBMEstimator search_space

Co-authored-by: thinkall <3197038+thinkall@users.noreply.github.com>

* Add test for LGBMEstimator objective parameter

Co-authored-by: thinkall <3197038+thinkall@users.noreply.github.com>

* Fix format error

* Remove changes, just add a test to verify the current supported usage

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: thinkall <3197038+thinkall@users.noreply.github.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
2026-01-19 21:10:21 +08:00

111 lines
3.2 KiB
Python

import sys
import pytest
from flaml import AutoML, tune
try:
import transformers
_transformers_installed = True
except ImportError:
_transformers_installed = False
@pytest.mark.skipif(
sys.platform == "darwin" or not _transformers_installed, reason="do not run on mac os or transformers not installed"
)
def test_custom_hp_nlp():
from test.nlp.utils import get_automl_settings, get_toy_data_seqclassification
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()
automl = AutoML()
automl_settings = get_automl_settings()
automl_settings["custom_hp"] = None
automl_settings["custom_hp"] = {
"transformer": {
"model_path": {
"domain": tune.choice(["google/electra-small-discriminator"]),
},
"num_train_epochs": {"domain": 3},
}
}
automl_settings["fit_kwargs_by_estimator"] = {
"transformer": {
"output_dir": "test/data/output/",
"fp16": False,
}
}
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
def test_custom_hp():
from sklearn.datasets import load_iris
X_train, y_train = load_iris(return_X_y=True)
automl = AutoML()
custom_hp = {
"xgboost": {
"n_estimators": {
"domain": tune.lograndint(lower=1, upper=100),
"low_cost_init_value": 1,
},
},
"rf": {
"max_leaves": {
"domain": None, # disable search
},
},
"lgbm": {
"subsample": {
"domain": tune.uniform(lower=0.1, upper=1.0),
"init_value": 1.0,
},
"subsample_freq": {
"domain": 1, # subsample_freq must > 0 to enable subsample
},
},
}
automl.fit(X_train, y_train, custom_hp=custom_hp, time_budget=2)
print(automl.best_config_per_estimator)
def test_lgbm_objective():
"""Test that objective parameter can be set via custom_hp for LGBMEstimator"""
import numpy as np
# Create a simple regression dataset
np.random.seed(42)
X_train = np.random.rand(100, 5)
y_train = np.random.rand(100) * 100 # Scale to avoid division issues with MAPE
automl = AutoML()
settings = {
"time_budget": 3,
"metric": "mape",
"task": "regression",
"estimator_list": ["lgbm"],
"verbose": 0,
"custom_hp": {"lgbm": {"objective": {"domain": "mape"}}}, # Fixed value, not tuned
}
automl.fit(X_train, y_train, **settings)
# Verify that objective was set correctly
assert "objective" in automl.best_config, "objective should be in best_config"
assert automl.best_config["objective"] == "mape", "objective should be 'mape'"
# Verify the model has the correct objective
if hasattr(automl.model, "estimator") and hasattr(automl.model.estimator, "get_params"):
model_params = automl.model.estimator.get_params()
assert model_params.get("objective") == "mape", "Model should use 'mape' objective"
print("Test passed: objective parameter works correctly with LGBMEstimator")
if __name__ == "__main__":
test_custom_hp()
test_lgbm_objective()