mirror of
https://github.com/microsoft/FLAML.git
synced 2026-02-09 02:09:16 +08:00
* Merged PR 1686010: Bump version to 2.3.5.post2, Distribute source and wheel, Fix license-file, Only log better models
- Fix license-file
- Bump version to 2.3.5.post2
- Distribute source and wheel
- Log better models only
- Add artifact_path to register_automl_pipeline
- Improve logging of _automl_user_configurations
----
This pull request fixes the project’s configuration by updating the license metadata for compliance with FLAML OSS 2.3.5.
The changes in `/pyproject.toml` update the project’s license and readme metadata by replacing deprecated keys with the new structured fields.
- `/pyproject.toml`: Replaced `license_file` with `license = { text = "MIT" }`.
- `/pyproject.toml`: Replaced `description-file` with `readme = "README.md"`.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->
Related work items: #4252053
* Merged PR 1688479: Handle feature_importances_ is None, Catch RuntimeError and wait for spark cluster to recover
- Add warning message when feature_importances_ is None (#3982120)
- Catch RuntimeError and wait for spark cluster to recover (#3982133)
----
Bug fix.
This pull request prevents an AttributeError in the feature importance plotting function by adding a check for a `None` value with an informative warning message.
- `flaml/fabric/visualization.py`: Checks if `result.feature_importances_` is `None`, logs a warning with possible reasons, and returns early.
- `flaml/fabric/visualization.py`: Imports `logger` from `flaml.automl.logger` to support the warning message.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->
Related work items: #3982120, #3982133
* Removed deprecated metadata section
* Fix log_params, log_artifact doesn't support run_id in mlflow 2.6.0
* Remove autogen
* Remove autogen
* Remove autogen
* Merged PR 1776547: Fix flaky test test_automl
Don't throw error when time budget is not enough
----
#### AI description (iteration 1)
#### PR Classification
Bug fix addressing a failing test in the AutoML notebook example.
#### PR Summary
This PR fixes a flaky test by adding a conditional check in the AutoML test that prints a message and exits early if no best estimator is set, thereby preventing unpredictable test failures.
- `test/automl/test_notebook_example.py`: Introduced a check to print "Training budget is not sufficient" and return if `automl.best_estimator` is not found.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->
Related work items: #4573514
* Merged PR 1777952: Fix unrecognized or malformed field 'license-file' when uploading wheel to feed
Try to fix InvalidDistribution: Invalid distribution metadata: unrecognized or malformed field 'license-file'
----
Bug fix addressing package metadata configuration.
This pull request fixes the error with unrecognized or malformed license file fields during wheel uploads by updating the setup configuration.
- In `setup.py`, added `license="MIT"` and `license_files=["LICENSE"]` to provide proper license metadata.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->
Related work items: #4560034
* Cherry-pick Merged PR 1879296: Add support to python 3.12 and spark 4.0
* Cherry-pick Merged PR 1890869: Improve time_budget estimation for mlflow logging
* Cherry-pick Merged PR 1879296: Add support to python 3.12 and spark 4.0
* Disable openai workflow
* Add python 3.12 to test envs
* Manually trigger openai
* Support markdown files with underscore-prefixed file names
* Improve save dependencies
* SynapseML is not installed
* Fix syntax error:Module !flaml/autogen was never imported
* macos 3.12 also hangs
* fix syntax error
* Update python version in actions
* Install setuptools for using pkg_resources
* Fix test_automl_performance in Github actions
* Fix test_nested_run
209 lines
6.8 KiB
Python
209 lines
6.8 KiB
Python
import sys
|
|
|
|
import pytest
|
|
|
|
try:
|
|
from minio.error import ServerError
|
|
except ImportError:
|
|
|
|
class ServerError(Exception):
|
|
pass
|
|
|
|
|
|
try:
|
|
from openml.exceptions import OpenMLServerException
|
|
except ImportError:
|
|
|
|
class OpenMLServerException(Exception):
|
|
pass
|
|
|
|
|
|
from requests.exceptions import ChunkedEncodingError, SSLError
|
|
|
|
|
|
def test_automl(budget=5, dataset_format="dataframe", hpo_method=None):
|
|
import urllib3
|
|
|
|
from flaml.automl.data import load_openml_dataset
|
|
|
|
performance_check_budget = 600
|
|
if (
|
|
sys.platform == "darwin"
|
|
and budget < performance_check_budget
|
|
and dataset_format == "dataframe"
|
|
and "3.9" in sys.version
|
|
):
|
|
budget = performance_check_budget # revise the buget on macos
|
|
if budget == performance_check_budget:
|
|
budget = None
|
|
max_iter = 60
|
|
else:
|
|
max_iter = None
|
|
try:
|
|
X_train, X_test, y_train, y_test = load_openml_dataset(
|
|
dataset_id=1169, data_dir="test/", dataset_format=dataset_format
|
|
)
|
|
except (
|
|
OpenMLServerException,
|
|
ChunkedEncodingError,
|
|
urllib3.exceptions.ReadTimeoutError,
|
|
SSLError,
|
|
ServerError,
|
|
Exception,
|
|
) as e:
|
|
print(e)
|
|
return
|
|
""" import AutoML class from flaml package """
|
|
from flaml import AutoML
|
|
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": budget, # total running time in seconds
|
|
"max_iter": max_iter, # maximum number of iterations
|
|
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
|
"task": "classification", # task type
|
|
"log_file_name": "airlines_experiment.log", # flaml log file
|
|
"seed": 7654321, # random seed
|
|
"hpo_method": hpo_method,
|
|
"log_type": "all",
|
|
"estimator_list": [
|
|
"lgbm",
|
|
"xgboost",
|
|
"xgb_limitdepth",
|
|
"rf",
|
|
"extra_tree",
|
|
], # list of ML learners
|
|
"eval_method": "holdout",
|
|
}
|
|
"""The main flaml automl API"""
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
""" retrieve best config and best learner """
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
if not automl.best_estimator:
|
|
print("Training budget is not sufficient")
|
|
return
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print(f"Best accuracy on validation data: {1 - automl.best_loss:.4g}")
|
|
print(f"Training duration of best run: {automl.best_config_train_time:.4g} s")
|
|
print(automl.model.estimator)
|
|
print(automl.best_config_per_estimator)
|
|
print("time taken to find best model:", automl.time_to_find_best_model)
|
|
""" pickle and save the automl object """
|
|
import pickle
|
|
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
""" compute predictions of testing dataset """
|
|
y_pred = automl.predict(X_test)
|
|
print("Predicted labels", y_pred)
|
|
print("True labels", y_test)
|
|
y_pred_proba = automl.predict_proba(X_test)[:, 1]
|
|
""" compute different metric values on testing dataset """
|
|
from flaml.automl.ml import sklearn_metric_loss_score
|
|
|
|
accuracy = 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test)
|
|
print("accuracy", "=", accuracy)
|
|
print("roc_auc", "=", 1 - sklearn_metric_loss_score("roc_auc", y_pred_proba, y_test))
|
|
print("log_loss", "=", sklearn_metric_loss_score("log_loss", y_pred_proba, y_test))
|
|
if budget is None:
|
|
assert accuracy >= 0.669, "the accuracy of flaml should be larger than 0.67"
|
|
from flaml.automl.data import get_output_from_log
|
|
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(filename=settings["log_file_name"], time_budget=6)
|
|
for config in config_history:
|
|
print(config)
|
|
print(automl.resource_attr)
|
|
print(automl.max_resource)
|
|
print(automl.min_resource)
|
|
print(automl.feature_names_in_)
|
|
print(automl.feature_importances_)
|
|
if budget is not None:
|
|
automl.fit(X_train=X_train, y_train=y_train, ensemble=True, **settings)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.platform in ["win32"] and sys.version.startswith("3.9"),
|
|
reason="do not run if windows and python 3.9",
|
|
)
|
|
def test_automl_array():
|
|
test_automl(5, "array", "bs")
|
|
|
|
|
|
def _test_nobudget():
|
|
# needs large RAM to run this test
|
|
test_automl(-1)
|
|
|
|
|
|
def test_mlflow():
|
|
# subprocess.check_call([sys.executable, "-m", "pip", "install", "mlflow"])
|
|
import mlflow
|
|
|
|
from flaml.automl.data import load_openml_task
|
|
|
|
try:
|
|
X_train, X_test, y_train, y_test = load_openml_task(task_id=7592, data_dir="test/")
|
|
except (OpenMLServerException, ChunkedEncodingError, SSLError, ServerError, Exception) as e:
|
|
print(e)
|
|
return
|
|
""" import AutoML class from flaml package """
|
|
from flaml import AutoML
|
|
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": 5, # total running time in seconds
|
|
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
|
"estimator_list": ["lgbm", "rf", "xgboost"], # list of ML learners
|
|
"task": "classification", # task type
|
|
"sample": False, # whether to subsample training data
|
|
"log_file_name": "adult.log", # flaml log file
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
mlflow.set_experiment("flaml")
|
|
with mlflow.start_run() as run:
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
mlflow.sklearn.log_model(automl, "automl")
|
|
loaded_model = mlflow.pyfunc.load_model(f"{run.info.artifact_uri}/automl")
|
|
print(loaded_model.predict(X_test))
|
|
automl._mem_thres = 0
|
|
print(automl.trainable(automl.points_to_evaluate[0]))
|
|
|
|
settings["use_ray"] = True
|
|
try:
|
|
with mlflow.start_run() as run:
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
mlflow.sklearn.log_model(automl, "automl")
|
|
automl = mlflow.sklearn.load_model(f"{run.info.artifact_uri}/automl")
|
|
print(automl.predict_proba(X_test))
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
def test_mlflow_iris():
|
|
import mlflow
|
|
from sklearn.datasets import load_iris
|
|
|
|
from flaml import AutoML
|
|
|
|
with mlflow.start_run():
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2, # in seconds
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "iris.log",
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
# subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "mlflow"])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_automl(600)
|