Files
FLAML/flaml/automl/data.py
Li Jiang 1285700d7a Update readme, bump version to 2.4.0, fix CI errors (#1466)
* Update gitignore

* Bump version to 2.4.0

* Update readme

* Pre-download california housing data

* Use pre-downloaded california housing data

* Pin lightning<=2.5.6

* Fix typo in find and replace

* Fix estimators has no attribute __sklearn_tags__

* Pin torch to 2.2.2 in tests

* Fix conflict

* Update pytorch-forecasting

* Update pytorch-forecasting

* Update pytorch-forecasting

* Use numpy<2 for testing

* Update scikit-learn

* Run Build and UT every other day

* Pin pip<24.1

* Pin pip<24.1 in pipeline

* Loosen pip, install pytorch_forecasting only in py311

* Add support to new versions of nlp dependecies

* Fix formats

* Remove redefinition

* Update mlflow versions

* Fix mlflow version syntax

* Update gitignore

* Clean up cache to free space

* Remove clean up action cache

* Fix blendsearch

* Update test workflow

* Update setup.py

* Fix catboost version

* Update workflow

* Prepare for python 3.14

* Support no catboost

* Fix tests

* Fix python_requires

* Update test workflow

* Fix vw tests

* Remove python 3.9

* Fix nlp tests

* Fix prophet

* Print pip freeze for better debugging

* Fix Optuna search does not support parameters of type Float with samplers of type Quantized

* Save dependencies for later inspection

* Fix coverage.xml not exists

* Fix github action permission

* Handle python 3.13

* Address openml is not installed

* Check dependencies before run tests

* Update dependencies

* Fix syntax error

* Use bash

* Update dependencies

* Fix git error

* Loose mlflow constraints

* Add rerun, use mlflow-skinny

* Fix git error

* Remove ray tests

* Update xgboost versions

* Fix automl pickle error

* Don't test python 3.10 on macos as it's stuck

* Rebase before push

* Reduce number of branches
2026-01-09 13:40:52 +08:00

784 lines
30 KiB
Python

# !
# * Copyright (c) Microsoft Corporation. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
import json
import os
import random
import uuid
from datetime import datetime, timedelta
from decimal import ROUND_HALF_UP, Decimal
from typing import TYPE_CHECKING, Union
import numpy as np
from flaml.automl.spark import DataFrame, F, Series, T, pd, ps, psDataFrame, psSeries
from flaml.automl.training_log import training_log_reader
try:
from scipy.sparse import issparse, vstack
except ImportError:
pass
if TYPE_CHECKING:
from flaml.automl.task import Task
TS_TIMESTAMP_COL = "ds"
TS_VALUE_COL = "y"
def load_openml_dataset(dataset_id, data_dir=None, random_state=0, dataset_format="dataframe"):
"""Load dataset from open ML.
If the file is not cached locally, download it from open ML.
Args:
dataset_id: An integer of the dataset id in openml.
data_dir: A string of the path to store and load the data.
random_state: An integer of the random seed for splitting data.
dataset_format: A string specifying the format of returned dataset. Default is 'dataframe'.
Can choose from ['dataframe', 'array'].
If 'dataframe', the returned dataset will be a Pandas DataFrame.
If 'array', the returned dataset will be a NumPy array or a SciPy sparse matrix.
Returns:
X_train: Training data.
X_test: Test data.
y_train: A series or array of labels for training data.
y_test: A series or array of labels for test data.
"""
import pickle
try:
import openml
except ImportError:
openml = None
from sklearn.model_selection import train_test_split
filename = "openml_ds" + str(dataset_id) + ".pkl"
filepath = os.path.join(data_dir, filename)
if os.path.isfile(filepath):
print("load dataset from", filepath)
with open(filepath, "rb") as f:
dataset = pickle.load(f)
else:
print("download dataset from openml")
dataset = openml.datasets.get_dataset(dataset_id) if openml else None
if not os.path.exists(data_dir):
os.makedirs(data_dir)
with open(filepath, "wb") as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
print("Dataset name:", dataset.name) if dataset else None
try:
X, y, *__ = dataset.get_data(target=dataset.default_target_attribute, dataset_format=dataset_format)
except (ValueError, AttributeError, TypeError):
from sklearn.datasets import fetch_openml
X, y = fetch_openml(data_id=dataset_id, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state)
print(
"X_train.shape: {}, y_train.shape: {};\nX_test.shape: {}, y_test.shape: {}".format(
X_train.shape,
y_train.shape,
X_test.shape,
y_test.shape,
)
)
return X_train, X_test, y_train, y_test
def load_openml_task(task_id, data_dir):
"""Load task from open ML.
Use the first fold of the task.
If the file is not cached locally, download it from open ML.
Args:
task_id: An integer of the task id in openml.
data_dir: A string of the path to store and load the data.
Returns:
X_train: A dataframe of training data.
X_test: A dataframe of test data.
y_train: A series of labels for training data.
y_test: A series of labels for test data.
"""
import pickle
import openml
task = openml.tasks.get_task(task_id)
filename = "openml_task" + str(task_id) + ".pkl"
filepath = os.path.join(data_dir, filename)
if os.path.isfile(filepath):
print("load dataset from", filepath)
with open(filepath, "rb") as f:
dataset = pickle.load(f)
else:
print("download dataset from openml")
dataset = task.get_dataset()
with open(filepath, "wb") as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
X, y, _, _ = dataset.get_data(task.target_name)
train_indices, test_indices = task.get_train_test_split_indices(
repeat=0,
fold=0,
sample=0,
)
X_train = X.iloc[train_indices]
y_train = y[train_indices]
X_test = X.iloc[test_indices]
y_test = y[test_indices]
print(
"X_train.shape: {}, y_train.shape: {},\nX_test.shape: {}, y_test.shape: {}".format(
X_train.shape,
y_train.shape,
X_test.shape,
y_test.shape,
)
)
return X_train, X_test, y_train, y_test
def get_output_from_log(filename, time_budget):
"""Get output from log file.
Args:
filename: A string of the log file name.
time_budget: A float of the time budget in seconds.
Returns:
search_time_list: A list of the finished time of each logged iter.
best_error_list: A list of the best validation error after each logged iter.
error_list: A list of the validation error of each logged iter.
config_list: A list of the estimator, sample size and config of each logged iter.
logged_metric_list: A list of the logged metric of each logged iter.
"""
best_config = None
best_learner = None
best_val_loss = float("+inf")
search_time_list = []
config_list = []
best_error_list = []
error_list = []
logged_metric_list = []
best_config_list = []
with training_log_reader(filename) as reader:
for record in reader.records():
time_used = record.wall_clock_time
val_loss = record.validation_loss
config = record.config
learner = record.learner.split("_")[0]
sample_size = record.sample_size
metric = record.logged_metric
if time_used < time_budget and np.isfinite(val_loss):
if val_loss < best_val_loss:
best_val_loss = val_loss
best_config = config
best_learner = learner
best_config_list.append(best_config)
search_time_list.append(time_used)
best_error_list.append(best_val_loss)
logged_metric_list.append(metric)
error_list.append(val_loss)
config_list.append(
{
"Current Learner": learner,
"Current Sample": sample_size,
"Current Hyper-parameters": record.config,
"Best Learner": best_learner,
"Best Hyper-parameters": best_config,
}
)
return (
search_time_list,
best_error_list,
error_list,
config_list,
logged_metric_list,
)
def concat(X1, X2):
"""concatenate two matrices vertically."""
if type(X1) != type(X2):
if isinstance(X2, (psDataFrame, psSeries)):
X1 = ps.from_pandas(pd.DataFrame(X1))
elif isinstance(X1, (psDataFrame, psSeries)):
X2 = ps.from_pandas(pd.DataFrame(X2))
else:
X1 = pd.DataFrame(X1)
X2 = pd.DataFrame(X2)
if isinstance(X1, (DataFrame, Series)):
df = pd.concat([X1, X2], sort=False)
df.reset_index(drop=True, inplace=True)
if isinstance(X1, DataFrame):
cat_columns = X1.select_dtypes(include="category").columns
if len(cat_columns):
df[cat_columns] = df[cat_columns].astype("category")
return df
if isinstance(X1, (psDataFrame, psSeries)):
df = ps.concat([X1, X2], ignore_index=True)
if isinstance(X1, psDataFrame):
cat_columns = X1.select_dtypes(include="category").columns.values.tolist()
if len(cat_columns):
df[cat_columns] = df[cat_columns].astype("category")
return df
if issparse(X1):
return vstack((X1, X2))
else:
return np.concatenate([X1, X2])
def add_time_idx_col(X):
unique_dates = X[TS_TIMESTAMP_COL].drop_duplicates().sort_values(ascending=True)
# assume no missing timestamps
freq = pd.infer_freq(unique_dates)
if freq == "MS":
X["time_idx"] = X[TS_TIMESTAMP_COL].dt.year * 12 + X[TS_TIMESTAMP_COL].dt.month
elif freq == "Y":
X["time_idx"] = X[TS_TIMESTAMP_COL].dt.year
else:
# using time frequency to generate all time stamps and then indexing for time_idx
# full_range = pd.date_range(X[TS_TIMESTAMP_COL].min(), X[TS_TIMESTAMP_COL].max(), freq=freq).to_list()
# X["time_idx"] = [full_range.index(time) for time in X[TS_TIMESTAMP_COL]]
# taking minimum difference in timestamp
timestamps = unique_dates.view("int64")
freq = int(timestamps.diff().mode())
X["time_idx"] = timestamps - timestamps.min() / freq
X["time_idx"] = X["time_idx"].astype("int")
return X
class DataTransformer:
"""Transform input training data."""
def fit_transform(self, X: Union[DataFrame, np.ndarray], y, task: Union[str, "Task"]):
"""Fit transformer and process the input training data according to the task type.
Args:
X: A numpy array or a pandas dataframe of training data.
y: A numpy array or a pandas series of labels.
task: An instance of type Task, or a str such as 'classification', 'regression'.
Returns:
X: Processed numpy array or pandas dataframe of training data.
y: Processed numpy array or pandas series of labels.
"""
if isinstance(task, str):
from flaml.automl.task.factory import task_factory
task = task_factory(task, X, y)
if task.is_nlp():
# if the mode is NLP, check the type of input, each column must be either string or
# ids (input ids, token type id, attention mask, etc.)
str_columns = []
for column in X.columns:
if isinstance(X[column].iloc[0], str):
str_columns.append(column)
if len(str_columns) > 0:
X[str_columns] = X[str_columns].astype("string")
self._str_columns = str_columns
elif isinstance(X, DataFrame):
X = X.copy()
n = X.shape[0]
cat_columns, num_columns, datetime_columns = [], [], []
drop = False
if task.is_ts_forecast():
X = X.rename(columns={X.columns[0]: TS_TIMESTAMP_COL})
if task.is_ts_forecastpanel():
if "time_idx" not in X:
X = add_time_idx_col(X)
ds_col = X.pop(TS_TIMESTAMP_COL)
if isinstance(y, Series):
y = y.rename(TS_VALUE_COL)
for column in X.columns:
# sklearn\utils\validation.py needs int/float values
if X[column].dtype.name in ("object", "category", "string"):
if X[column].nunique() == 1 or X[column].nunique(dropna=True) == n - X[column].isnull().sum():
X.drop(columns=column, inplace=True)
drop = True
elif X[column].dtype.name == "category":
current_categories = X[column].cat.categories
if "__NAN__" not in current_categories:
X[column] = X[column].cat.add_categories("__NAN__").fillna("__NAN__")
cat_columns.append(column)
else:
X[column] = X[column].fillna("__NAN__")
cat_columns.append(column)
elif X[column].nunique(dropna=True) < 2:
X.drop(columns=column, inplace=True)
drop = True
else: # datetime or numeric
if X[column].dtype.name == "datetime64[ns]":
tmp_dt = X[column].dt
new_columns_dict = {
f"year_{column}": tmp_dt.year,
f"month_{column}": tmp_dt.month,
f"day_{column}": tmp_dt.day,
f"hour_{column}": tmp_dt.hour,
f"minute_{column}": tmp_dt.minute,
f"second_{column}": tmp_dt.second,
f"dayofweek_{column}": tmp_dt.dayofweek,
f"dayofyear_{column}": tmp_dt.dayofyear,
f"quarter_{column}": tmp_dt.quarter,
}
for key, value in new_columns_dict.items():
if key not in X.columns and value.nunique(dropna=False) >= 2:
X[key] = value
num_columns.append(key)
X[column] = X[column].map(datetime.toordinal)
datetime_columns.append(column)
del tmp_dt
X[column] = X[column].fillna(np.nan)
num_columns.append(column)
X = X[cat_columns + num_columns]
if task.is_ts_forecast():
X.insert(0, TS_TIMESTAMP_COL, ds_col)
if cat_columns:
X[cat_columns] = X[cat_columns].astype("category")
if num_columns:
X_num = X[num_columns]
if np.issubdtype(X_num.columns.dtype, np.integer) and (
drop or min(X_num.columns) != 0 or max(X_num.columns) != X_num.shape[1] - 1
):
X_num.columns = range(X_num.shape[1])
drop = True
else:
drop = False
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
self.transformer = ColumnTransformer(
[
(
"continuous",
SimpleImputer(missing_values=np.nan, strategy="median"),
X_num.columns,
)
]
)
X[num_columns] = self.transformer.fit_transform(X_num)
self._cat_columns, self._num_columns, self._datetime_columns = (
cat_columns,
num_columns,
datetime_columns,
)
self._drop = drop
if task.is_classification() or not pd.api.types.is_numeric_dtype(y) and not task.is_nlg():
if not task.is_token_classification():
from sklearn.preprocessing import LabelEncoder
self.label_transformer = LabelEncoder()
else:
from flaml.automl.nlp.utils import LabelEncoderforTokenClassification
self.label_transformer = LabelEncoderforTokenClassification()
y = self.label_transformer.fit_transform(y)
else:
self.label_transformer = None
self._task = task
return X, y
def transform(self, X: Union[DataFrame, np.array]):
"""Process data using fit transformer.
Args:
X: A numpy array or a pandas dataframe of training data.
Returns:
X: Processed numpy array or pandas dataframe of training data.
"""
X = X.copy()
if self._task.is_nlp():
# if the mode is NLP, check the type of input, each column must be either string or
# ids (input ids, token type id, attention mask, etc.)
if len(self._str_columns) > 0:
X[self._str_columns] = X[self._str_columns].astype("string")
elif isinstance(X, DataFrame):
cat_columns, num_columns, datetime_columns = (
self._cat_columns,
self._num_columns,
self._datetime_columns,
)
if self._task.is_ts_forecast():
X = X.rename(columns={X.columns[0]: TS_TIMESTAMP_COL})
ds_col = X.pop(TS_TIMESTAMP_COL)
for column in datetime_columns:
tmp_dt = X[column].dt
new_columns_dict = {
f"year_{column}": tmp_dt.year,
f"month_{column}": tmp_dt.month,
f"day_{column}": tmp_dt.day,
f"hour_{column}": tmp_dt.hour,
f"minute_{column}": tmp_dt.minute,
f"second_{column}": tmp_dt.second,
f"dayofweek_{column}": tmp_dt.dayofweek,
f"dayofyear_{column}": tmp_dt.dayofyear,
f"quarter_{column}": tmp_dt.quarter,
}
for new_col_name, new_col_value in new_columns_dict.items():
if new_col_name not in X.columns and new_col_name in num_columns:
X[new_col_name] = new_col_value
X[column] = X[column].map(datetime.toordinal)
del tmp_dt
X = X[cat_columns + num_columns].copy()
if self._task.is_ts_forecast():
X.insert(0, TS_TIMESTAMP_COL, ds_col)
for column in cat_columns:
if X[column].dtype.name == "object":
X[column] = X[column].fillna("__NAN__")
elif X[column].dtype.name == "category":
current_categories = X[column].cat.categories
if "__NAN__" not in current_categories:
X[column] = X[column].cat.add_categories("__NAN__").fillna("__NAN__")
if cat_columns:
X[cat_columns] = X[cat_columns].astype("category")
if num_columns:
X_num = X[num_columns].fillna(np.nan)
if self._drop:
X_num.columns = range(X_num.shape[1])
X[num_columns] = self.transformer.transform(X_num)
return X
def group_counts(groups):
_, i, c = np.unique(groups, return_counts=True, return_index=True)
return c[np.argsort(i)]
def get_random_dataframe(n_rows: int = 200, ratio_none: float = 0.1, seed: int = 42) -> DataFrame:
"""Generate a random pandas DataFrame with various data types for testing.
This function creates a DataFrame with multiple column types including:
- Timestamps
- Integers
- Floats
- Categorical values
- Booleans
- Lists (tags)
- Decimal strings
- UUIDs
- Binary data (as hex strings)
- JSON blobs
- Nullable text fields
Parameters
----------
n_rows : int, default=200
Number of rows in the generated DataFrame
ratio_none : float, default=0.1
Probability of generating None values in applicable columns
seed : int, default=42
Random seed for reproducibility
Returns
-------
pd.DataFrame
A DataFrame with 14 columns of various data types
Examples
--------
>>> df = get_random_dataframe(100, 0.05, 123)
>>> df.shape
(100, 14)
>>> df.dtypes
timestamp datetime64[ns]
id int64
score float64
status object
flag object
count object
value object
tags object
rating object
uuid object
binary object
json_blob object
category category
nullable_text object
dtype: object
"""
np.random.seed(seed)
random.seed(seed)
def random_tags():
tags = ["AI", "ML", "data", "robotics", "vision"]
return random.sample(tags, k=random.randint(1, 3)) if random.random() > ratio_none else None
def random_decimal():
return (
str(Decimal(random.uniform(1, 5)).quantize(Decimal("0.01"), rounding=ROUND_HALF_UP))
if random.random() > ratio_none
else None
)
def random_json_blob():
blob = {"a": random.randint(1, 10), "b": random.random()}
return json.dumps(blob) if random.random() > ratio_none else None
def random_binary():
return bytes(random.randint(0, 255) for _ in range(4)).hex() if random.random() > ratio_none else None
data = {
"timestamp": [
datetime(2020, 1, 1) + timedelta(days=np.random.randint(0, 1000)) if np.random.rand() > ratio_none else None
for _ in range(n_rows)
],
"id": range(1, n_rows + 1),
"score": np.random.uniform(0, 100, n_rows),
"status": np.random.choice(
["active", "inactive", "pending", None],
size=n_rows,
p=[(1 - ratio_none) / 3, (1 - ratio_none) / 3, (1 - ratio_none) / 3, ratio_none],
),
"flag": np.random.choice(
[True, False, None], size=n_rows, p=[(1 - ratio_none) / 2, (1 - ratio_none) / 2, ratio_none]
),
"count": [np.random.randint(0, 100) if np.random.rand() > ratio_none else None for _ in range(n_rows)],
"value": [round(np.random.normal(50, 15), 2) if np.random.rand() > ratio_none else None for _ in range(n_rows)],
"tags": [random_tags() for _ in range(n_rows)],
"rating": [random_decimal() for _ in range(n_rows)],
"uuid": [str(uuid.uuid4()) if np.random.rand() > ratio_none else None for _ in range(n_rows)],
"binary": [random_binary() for _ in range(n_rows)],
"json_blob": [random_json_blob() for _ in range(n_rows)],
"category": pd.Categorical(
np.random.choice(
["A", "B", "C", None],
size=n_rows,
p=[(1 - ratio_none) / 3, (1 - ratio_none) / 3, (1 - ratio_none) / 3, ratio_none],
)
),
"nullable_text": [random.choice(["Good", "Bad", "Average", None]) for _ in range(n_rows)],
}
return pd.DataFrame(data)
def auto_convert_dtypes_spark(
df: psDataFrame,
na_values: list = None,
category_threshold: float = 0.3,
convert_threshold: float = 0.6,
sample_ratio: float = 0.1,
) -> tuple[psDataFrame, dict]:
"""Automatically convert data types in a PySpark DataFrame using heuristics.
This function analyzes a sample of the DataFrame to infer appropriate data types
and applies the conversions. It handles timestamps, numeric values, booleans,
and categorical fields.
Args:
df: A PySpark DataFrame to convert.
na_values: List of strings to be considered as NA/NaN. Defaults to
['NA', 'na', 'NULL', 'null', ''].
category_threshold: Maximum ratio of unique values to total values
to consider a column categorical. Defaults to 0.3.
convert_threshold: Minimum ratio of successfully converted values required
to apply a type conversion. Defaults to 0.6.
sample_ratio: Fraction of data to sample for type inference. Defaults to 0.1.
Returns:
tuple: (The DataFrame with converted types, A dictionary mapping column names to
their inferred types as strings)
Note:
- 'category' in the schema dict is conceptual as PySpark doesn't have a true
category type like pandas
- The function uses sampling for efficiency with large datasets
"""
n_rows = df.count()
if na_values is None:
na_values = ["NA", "na", "NULL", "null", ""]
# Normalize NA-like values
for colname, coltype in df.dtypes:
if coltype == "string":
df = df.withColumn(
colname,
F.when(F.trim(F.lower(F.col(colname))).isin([v.lower() for v in na_values]), None).otherwise(
F.col(colname)
),
)
schema = {}
for colname in df.columns:
# Sample once at an appropriate ratio
sample_ratio_to_use = min(1.0, sample_ratio if n_rows * sample_ratio > 100 else 100 / n_rows)
col_sample = df.select(colname).sample(withReplacement=False, fraction=sample_ratio_to_use).dropna()
sample_count = col_sample.count()
inferred_type = "string" # Default
if col_sample.dtypes[0][1] != "string":
schema[colname] = col_sample.dtypes[0][1]
continue
if sample_count == 0:
schema[colname] = "string"
continue
# Check if timestamp
ts_col = col_sample.withColumn("parsed", F.to_timestamp(F.col(colname)))
# Check numeric
if (
col_sample.withColumn("n", F.col(colname).cast("double")).filter("n is not null").count()
>= sample_count * convert_threshold
):
# All whole numbers?
all_whole = (
col_sample.withColumn("n", F.col(colname).cast("double"))
.filter("n is not null")
.withColumn("frac", F.abs(F.col("n") % 1))
.filter("frac > 0.000001")
.count()
== 0
)
inferred_type = "int" if all_whole else "double"
# Check low-cardinality (category-like)
elif (
sample_count > 0
and col_sample.select(F.countDistinct(F.col(colname))).collect()[0][0] / sample_count <= category_threshold
):
inferred_type = "category" # Will just be string, but marked as such
# Check if timestamp
elif ts_col.filter(F.col("parsed").isNotNull()).count() >= sample_count * convert_threshold:
inferred_type = "timestamp"
schema[colname] = inferred_type
# Apply inferred schema
for colname, inferred_type in schema.items():
if inferred_type == "int":
df = df.withColumn(colname, F.col(colname).cast(T.IntegerType()))
elif inferred_type == "double":
df = df.withColumn(colname, F.col(colname).cast(T.DoubleType()))
elif inferred_type == "boolean":
df = df.withColumn(
colname,
F.when(F.lower(F.col(colname)).isin("true", "yes", "1"), True)
.when(F.lower(F.col(colname)).isin("false", "no", "0"), False)
.otherwise(None),
)
elif inferred_type == "timestamp":
df = df.withColumn(colname, F.to_timestamp(F.col(colname)))
elif inferred_type == "category":
df = df.withColumn(colname, F.col(colname).cast(T.StringType())) # Marked conceptually
# otherwise keep as string (or original type)
return df, schema
def auto_convert_dtypes_pandas(
df: DataFrame,
na_values: list = None,
category_threshold: float = 0.3,
convert_threshold: float = 0.6,
sample_ratio: float = 1.0,
) -> tuple[DataFrame, dict]:
"""Automatically convert data types in a pandas DataFrame using heuristics.
This function analyzes the DataFrame to infer appropriate data types
and applies the conversions. It handles timestamps, timedeltas, numeric values,
and categorical fields.
Args:
df: A pandas DataFrame to convert.
na_values: List of strings to be considered as NA/NaN. Defaults to
['NA', 'na', 'NULL', 'null', ''].
category_threshold: Maximum ratio of unique values to total values
to consider a column categorical. Defaults to 0.3.
convert_threshold: Minimum ratio of successfully converted values required
to apply a type conversion. Defaults to 0.6.
sample_ratio: Fraction of data to sample for type inference. Not used in pandas version
but included for API compatibility. Defaults to 1.0.
Returns:
tuple: (The DataFrame with converted types, A dictionary mapping column names to
their inferred types as strings)
"""
if na_values is None:
na_values = {"NA", "na", "NULL", "null", ""}
df_converted = df.convert_dtypes()
schema = {}
# Sample if needed (for API compatibility)
if sample_ratio < 1.0:
df = df.sample(frac=sample_ratio)
n_rows = len(df)
for col in df.columns:
series = df[col]
# Replace NA-like values if string
series_cleaned = series.map(lambda x: np.nan if isinstance(x, str) and x.strip() in na_values else x)
# Skip conversion if already non-object data type, except bool which can potentially be categorical
if (
not isinstance(series_cleaned.dtype, pd.BooleanDtype)
and not isinstance(series_cleaned.dtype, pd.StringDtype)
and series_cleaned.dtype != "object"
):
# Keep the original data type for non-object dtypes
df_converted[col] = series
schema[col] = str(series_cleaned.dtype)
continue
# print(f"type: {series_cleaned.dtype}, column: {series_cleaned.name}")
if not isinstance(series_cleaned.dtype, pd.BooleanDtype):
# Try numeric (int or float)
numeric = pd.to_numeric(series_cleaned, errors="coerce")
if numeric.notna().sum() >= n_rows * convert_threshold:
if (numeric.dropna() % 1 == 0).all():
try:
df_converted[col] = numeric.astype("int") # Nullable integer
schema[col] = "int"
continue
except Exception:
pass
df_converted[col] = numeric.astype("double")
schema[col] = "double"
continue
# Try datetime
datetime_converted = pd.to_datetime(series_cleaned, errors="coerce")
if datetime_converted.notna().sum() >= n_rows * convert_threshold:
df_converted[col] = datetime_converted
schema[col] = "timestamp"
continue
# Try timedelta
try:
timedelta_converted = pd.to_timedelta(series_cleaned, errors="coerce")
if timedelta_converted.notna().sum() >= n_rows * convert_threshold:
df_converted[col] = timedelta_converted
schema[col] = "timedelta"
continue
except TypeError:
pass
# Try category
try:
unique_ratio = series_cleaned.nunique(dropna=True) / n_rows if n_rows > 0 else 1.0
if unique_ratio <= category_threshold:
df_converted[col] = series_cleaned.astype("category")
schema[col] = "category"
continue
except Exception:
pass
df_converted[col] = series_cleaned.astype("string")
schema[col] = "string"
return df_converted, schema