Files
xmrig/src/crypto/cn/CnCtx.cpp
rezky_nightky 5ca4828255 feat: stability improvements, see detail below
Key stability improvements made (deterministic + bounded)
1) Bounded memory usage in long-running stats
Fixed unbounded growth in NetworkState latency tracking:
Replaced std::vector<uint16_t> m_latency + push_back() with a fixed-size ring buffer (kLatencyWindow = 1024) and explicit counters.
Median latency computation now operates on at most 1024 samples, preventing memory growth and avoiding performance cliffs from ever-growing copies/sorts.
2) Prevent crash/UAF on shutdown + more predictable teardown
Controller shutdown ordering (Controller::stop()):
Now stops m_miner before destroying m_network.
This reduces chances of worker threads submitting results into a network listener that’s already destroyed.
Thread teardown hardening (backend/common/Thread.h):
Destructor now checks std::thread::joinable() before join().
Avoids std::terminate() if a thread object exists but never started due to early exit/error paths.
3) Fixed real leaks (including executable memory)
Executable memory leak fixed (crypto/cn/CnCtx.cpp):
CnCtx::create() allocates executable memory for generated_code via VirtualMemory::allocateExecutableMemory(0x4000, ...).
Previously CnCtx::release() only _mm_free()’d the struct, leaking the executable mapping.
Now CnCtx::release() frees generated_code before freeing the ctx.
GPU verification leak fixed (net/JobResults.cpp):
In getResults() (GPU result verification), a cryptonight_ctx was created via CnCtx::create() but never released.
Added CnCtx::release(ctx, 1).
4) JobResults: bounded queues + backpressure + safe shutdown semantics
The old JobResults could:

enqueue unlimited std::list items (m_results, m_bundles) → unbounded RAM,
call uv_queue_work per async batch → unbounded libuv threadpool backlog,
delete handler directly while worker threads might still submit → potential crash/UAF.
Changes made:

Hard queue limits:
kMaxQueuedResults = 4096
kMaxQueuedBundles = 256
Excess is dropped (bounded behavior under load).
Async coalescing:
Only one pending async notification at a time (m_pendingAsync), reducing eventfd/uv wake storms.
Bounded libuv work scheduling:
Only one uv_queue_work is scheduled at a time (m_workScheduled), preventing CPU starvation and unpredictable backlog.
Safe shutdown:
JobResults::stop() now detaches global handler first, then calls handler->stop().
Shutdown detaches m_listener, clears queues, and defers deletion until in-flight work is done.
Defensive bound on GPU result count:
Clamp count to 0xFF inside JobResults as well, not just in the caller, to guard against corrupted kernels/drivers.
5) Idempotent cleanup
VirtualMemory::destroy() now sets pool = nullptr after delete:
prevents accidental double-delete on repeated teardown paths.
Verification performed
codespell . --config ./.codespellrc: clean
CMake configure + build completed successfully (Release build)

Signed-off-by: rezky_nightky <with.rezky@gmail.com>
2026-01-21 21:22:43 +07:00

64 lines
2.2 KiB
C++

/* XMRig
* Copyright (c) 2018 Lee Clagett <https://github.com/vtnerd>
* Copyright (c) 2018-2020 SChernykh <https://github.com/SChernykh>
* Copyright (c) 2016-2020 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <limits>
#include "crypto/cn/CnCtx.h"
#include "base/crypto/Algorithm.h"
#include "crypto/cn/CryptoNight.h"
#include "crypto/common/portable/mm_malloc.h"
#include "crypto/common/VirtualMemory.h"
void xmrig::CnCtx::create(cryptonight_ctx **ctx, uint8_t *memory, size_t size, size_t count)
{
for (size_t i = 0; i < count; ++i) {
auto *c = static_cast<cryptonight_ctx *>(_mm_malloc(sizeof(cryptonight_ctx), 4096));
c->memory = memory + (i * size);
c->generated_code = reinterpret_cast<cn_mainloop_fun_ms_abi>(VirtualMemory::allocateExecutableMemory(0x4000, false));
c->generated_code_data.algo = Algorithm::INVALID;
c->generated_code_data.height = std::numeric_limits<uint64_t>::max();
ctx[i] = c;
}
}
void xmrig::CnCtx::release(cryptonight_ctx **ctx, size_t count)
{
if (ctx[0] == nullptr) {
return;
}
for (size_t i = 0; i < count; ++i) {
if (ctx[i] && ctx[i]->generated_code) {
# ifdef XMRIG_OS_WIN
VirtualMemory::freeLargePagesMemory(reinterpret_cast<void *>(ctx[i]->generated_code), 0);
# else
VirtualMemory::freeLargePagesMemory(reinterpret_cast<void *>(ctx[i]->generated_code), 0x4000);
# endif
ctx[i]->generated_code = nullptr;
}
_mm_free(ctx[i]);
}
}