mirror of
https://github.com/microsoft/FLAML.git
synced 2026-02-09 02:09:16 +08:00
adding precommit check (#930)
* adding precommit check * run precommit * Apply suggestions from code review Co-authored-by: Zvi Baratz <z.baratz@gmail.com> * apply precommit --------- Co-authored-by: Zvi Baratz <z.baratz@gmail.com>
This commit is contained in:
26
.github/workflows/pre-commit.yml
vendored
Normal file
26
.github/workflows/pre-commit.yml
vendored
Normal file
@@ -0,0 +1,26 @@
|
||||
name: Code formatting
|
||||
|
||||
# see: https://help.github.com/en/actions/reference/events-that-trigger-workflows
|
||||
on: # Trigger the workflow on push or pull request, but only for the main branch
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request: {}
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
jobs:
|
||||
|
||||
pre-commit-check:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
- name: Set $PY environment variable
|
||||
run: echo "PY=$(python -VV | sha256sum | cut -d' ' -f1)" >> $GITHUB_ENV
|
||||
- uses: actions/cache@v3
|
||||
with:
|
||||
path: ~/.cache/pre-commit
|
||||
key: pre-commit|${{ env.PY }}|${{ hashFiles('.pre-commit-config.yaml') }}
|
||||
- uses: pre-commit/action@v3.0.0
|
||||
@@ -61,8 +61,15 @@ def load_config_predictor(estimator_name, task, location=None):
|
||||
return predictor
|
||||
|
||||
|
||||
def suggest_config(task, X, y, estimator_or_predictor, location=None, k=None, meta_feature_fn=meta_feature):
|
||||
|
||||
def suggest_config(
|
||||
task,
|
||||
X,
|
||||
y,
|
||||
estimator_or_predictor,
|
||||
location=None,
|
||||
k=None,
|
||||
meta_feature_fn=meta_feature,
|
||||
):
|
||||
"""Suggest a list of configs for the given task and training data.
|
||||
|
||||
The returned configs can be used as starting points for AutoML.fit().
|
||||
|
||||
@@ -281,7 +281,8 @@ class PySparkOvertimeMonitor:
|
||||
|
||||
def __enter__(self):
|
||||
"""Enter the context manager.
|
||||
This will start a monitor thread if spark is available and force_cancel is True."""
|
||||
This will start a monitor thread if spark is available and force_cancel is True.
|
||||
"""
|
||||
if self._force_cancel and _have_spark:
|
||||
self._monitor_daemon = threading.Thread(target=self._monitor_overtime)
|
||||
# logger.setLevel("INFO")
|
||||
|
||||
Reference in New Issue
Block a user