* fix: Now resetting indexes for regression datasets when using group folds
* refactor: Simplified if statement to include all fold types
* docs: Updated docs to make it clear that group folds can be used for regression tasks
---------
Co-authored-by: Daniel Grindrod <daniel.grindrod@evotec.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* fix: Fixed bug where every underlying LGBMRegressor or LGBMClassifier had n_estimators = 1
* test: Added test showing case where FLAMLised CatBoostModel result isn't reproducible
* fix: Fixing issue where callbacks cause LGBM results to not be reproducible
* Update test/automl/test_regression.py
Co-authored-by: Li Jiang <bnujli@gmail.com>
* fix: Adding back the LGBM EarlyStopping
* refactor: Fix tweaked to ensure other models aren't likely to be affected
* test: Fixed test to allow reproduced results to be better than the FLAML results, when LGBM earlystopping is involved
---------
Co-authored-by: Daniel Grindrod <Daniel.Grindrod@evotec.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* Added documentation for automl.model.estimator usage
Updated documentation across various examples and the model.py file to include information about automl.model.estimator. This addition enhances the clarity and usability of FLAML by providing users with clear guidance on how to utilize this feature in their AutoML workflows. These changes aim to improve the overall user experience and facilitate easier understanding of FLAML's capabilities.
* fix: Ran pre-commit hook on docs
---------
Co-authored-by: Li Jiang <bnujli@gmail.com>
Co-authored-by: Daniel Grindrod <dannycg1996@gmail.com>
Co-authored-by: Daniel Grindrod <Daniel.Grindrod@evotec.com>
* Merged PR 1444697: Fix json dumps TypeError
Fix json dumps TypeError
----
Bug fix to address a `TypeError` in `json.dumps`.
This pull request fixes a `TypeError` encountered when using `json.dumps` on `automl._automl_user_configurations` by introducing a safe JSON serialization function.
- Added `safe_json_dumps` function in `flaml/fabric/mlflow.py` to handle non-serializable objects.
- Updated `MLflowIntegration` class in `flaml/fabric/mlflow.py` to use `safe_json_dumps` for JSON serialization.
- Modified `test/automl/test_multiclass.py` to test the new `safe_json_dumps` function.
Related work items: #3439408
* Fix data transform issue and spark log_loss metric compute error
* fix: CatBoostRegressors metrics are now reproducible
* test: Made tests live, which ensure the reproducibility of catboost models
* fix: Added defunct line of code as a comment
* fix: Re-adding removed if statement, and test to show one issue that if statement can cause
* fix: Stopped ending CatBoost training early when time budget is running out
---------
Co-authored-by: Daniel Grindrod <Daniel.Grindrod@evotec.com>
* Remove temporary pickle files
* Update version to 2.3.1
* Use TemporaryDirectory for pickle and log_artifact
* Fix 'CatBoostClassifier' object has no attribute '_get_param_names'
* Add more spark models and improved mlflow integration
* Update test_extra_models, setup and gitignore
* Remove autofe
* Remove autofe
* Remove autofe
* Sync changes in internal
* Fix test for env without pyspark
* Fix import errors
* Fix tests
* Fix typos
* Fix pytorch-forecasting version
* Remove internal funcs, rename _mlflow.py
* Fix import error
* Fix dependency
* Fix experiment name setting
* Fix dependency
* Update pandas version
* Update pytorch-forecasting version
* Add warning message for not has_automl
* Fix test errors with nltk 3.8.2
* Don't enable mlflow logging w/o an active run
* Fix pytorch-forecasting can't be pickled issue
* Update pyspark tests condition
* Update synapseml
* Update synapseml
* No parent run, no logging for OSS
* Log when autolog is enabled
* upgrade code
* Enable autolog for tune
* Increase time budget for test
* End run before start a new run
* Update parent run
* Fix import error
* clean up
* skip macos and win
* Update notes
* Update default value of model_history
* typographical corrections in the descriptions, comment improvements, general formatting for consistency
* consistent indentation for better readability, improved comments, typographical corrections
* updated docstrings for better clarity, added type hint for **kwargs, typographical corrections (no functionality changes)
* Fix format
---------
Co-authored-by: Li Jiang <bnujli@gmail.com>
* Don't pass `callbacks=None` to `XGBoostSklearnEstimator._fit`
The original implmentation would pass `callbacks=None` to `XGBoostSklearnEstimator._fit` and eventually lead to a `TypeError` of `XGBModel.fit() got an unexpected keyword argument 'callbacks'`. This PR instead does not pass the `callbacks=None` parameter to avoid the error.
* Update setup.py to allow for xgboost 2.x
---------
Co-authored-by: Li Jiang <bnujli@gmail.com>
* Fix typos, upgrade yarn packages, add some improvements
* Fix joblib 1.4.0 breaks joblib-spark
* Fix xgboost test error
* Pin xgboost<2.0.0
* Try update prophet to 1.5.1
* Update github workflow
* Revert prophet version
* Update github workflow
* Update install libomp
* Fix test errors
* Fix test errors
* Add retry to test and coverage
* Revert "Add retry to test and coverage"
This reverts commit ce13097cd5.
* Increase test budget
* Add more data to test_models, try fixing ValueError: Found array with 0 sample(s) (shape=(0, 252)) while a minimum of 1 is required.