mirror of
https://github.com/microsoft/FLAML.git
synced 2026-02-17 14:12:26 +08:00
Compare commits
9 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e463146cb8 | ||
|
|
7de4eb347d | ||
|
|
683f6befd2 | ||
|
|
a1f51d1d23 | ||
|
|
0e2dbd5378 | ||
|
|
2e43509690 | ||
|
|
f01acb67f6 | ||
|
|
59e882e5cc | ||
|
|
51c8768bcf |
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -12,7 +12,7 @@
|
||||
|
||||
## Checks
|
||||
|
||||
- I've used [pre-commit](https://microsoft.github.io/FLAML/docs/Contribute#pre-commit) to lint the changes in this PR (note the same in integrated in our CI checks).
|
||||
<!-- - I've used [pre-commit](https://microsoft.github.io/FLAML/docs/Contribute#pre-commit) to lint the changes in this PR (note the same in integrated in our CI checks). -->
|
||||
- [ ] I've included any doc changes needed for https://microsoft.github.io/FLAML/. See https://microsoft.github.io/FLAML/docs/Contribute#documentation to build and test documentation locally.
|
||||
- [ ] I've added tests (if relevant) corresponding to the changes introduced in this PR.
|
||||
- [ ] I've made sure all auto checks have passed.
|
||||
|
||||
29
.github/workflows/openai.yml
vendored
29
.github/workflows/openai.yml
vendored
@@ -7,10 +7,10 @@ on:
|
||||
pull_request:
|
||||
branches: ['main']
|
||||
paths:
|
||||
- 'flaml/integrations/oai/**'
|
||||
- 'test/openai/**'
|
||||
- 'notebook/integrate_openai.ipynb'
|
||||
- 'notebook/integrate_chatgpt_math.ipynb'
|
||||
- 'flaml/autogen/**'
|
||||
- 'test/autogen/**'
|
||||
- 'notebook/autogen_openai_completion.ipynb'
|
||||
- 'notebook/autogen_chatgpt_gpt4.ipynb'
|
||||
- '.github/workflows/openai.yml'
|
||||
|
||||
jobs:
|
||||
@@ -18,7 +18,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: [3.9]
|
||||
python-version: ["3.9", "3.10", "3.11"]
|
||||
runs-on: ${{ matrix.os }}
|
||||
environment: openai
|
||||
steps:
|
||||
@@ -33,14 +33,27 @@ jobs:
|
||||
python -m pip install --upgrade pip wheel
|
||||
pip install -e .[autogen,blendsearch]
|
||||
python -c "import flaml"
|
||||
pip install coverage pytest datasets
|
||||
- name: Coverage
|
||||
if: matrix.python-version == '3.9'
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
run: |
|
||||
pip install coverage pytest datasets nbconvert nbformat ipykernel
|
||||
coverage run -a -m pytest test/openai
|
||||
coverage run -a -m pytest test/autogen
|
||||
coverage xml
|
||||
cat "$(pwd)/test/openai/executed_openai_notebook_output.txt"
|
||||
- name: Coverage and check notebook outputs
|
||||
if: matrix.python-version != '3.9'
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
run: |
|
||||
pip install nbconvert nbformat ipykernel
|
||||
coverage run -a -m pytest test/autogen/oai/test_notebook.py
|
||||
coverage xml
|
||||
cat "$(pwd)/test/autogen/oai/executed_openai_notebook_output.txt"
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
with:
|
||||
|
||||
@@ -3,11 +3,17 @@ from collections import defaultdict
|
||||
|
||||
class Agent:
|
||||
"""(Experimental) An abstract class for AI agent.
|
||||
An agent can communicate with other agents, human and perform actions.
|
||||
Different agents can differ in how and who they communicate with, and what actions they can perform. For example, an autonomous agent can communicate with human and other agents, and perform actions by creating agents and sending messages to other agents. A planning agent can communicate with other agents to make a plan and keep track of tasks. An execution agent can only communicate with other agents, and perform actions such as executing a command or code.
|
||||
An agent can communicate with other agents and perform actions.
|
||||
Different agents can differ in what actions they perform in the `receive` method.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, name, system_message=""):
|
||||
"""
|
||||
Args:
|
||||
name (str): name of the agent
|
||||
system_message (str): system message to be sent to the agent
|
||||
"""
|
||||
# empty memory
|
||||
self._memory = []
|
||||
# a dictionary of conversations, default value is list
|
||||
@@ -31,7 +37,8 @@ class Agent:
|
||||
|
||||
def _receive(self, message, sender):
|
||||
"""Receive a message from another agent."""
|
||||
# print(self.name, "received message from", sender.name, ":", message)
|
||||
print("\n****", self.name, "received message from", sender.name, "****\n")
|
||||
print(message)
|
||||
self._conversations[sender.name].append({"content": message, "role": "user"})
|
||||
|
||||
def receive(self, message, sender):
|
||||
|
||||
35
flaml/autogen/agent/chat_agent.py
Normal file
35
flaml/autogen/agent/chat_agent.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from .agent import Agent
|
||||
from flaml.autogen.code_utils import DEFAULT_MODEL
|
||||
from flaml import oai
|
||||
|
||||
|
||||
class ChatAgent(Agent):
|
||||
"""(Experimental) Chat."""
|
||||
|
||||
DEFAULT_SYSTEM_MESSAGE = """You are a chat agent.
|
||||
"""
|
||||
|
||||
DEFAULT_CONFIG = {
|
||||
"model": DEFAULT_MODEL,
|
||||
}
|
||||
|
||||
def __init__(self, name, system_message=DEFAULT_SYSTEM_MESSAGE, work_dir=None, **config):
|
||||
"""
|
||||
Args:
|
||||
name (str): agent name
|
||||
system_message (str): system message to be sent to the agent
|
||||
work_dir (str): working directory for the agent to execute code
|
||||
config (dict): other configurations.
|
||||
"""
|
||||
super().__init__(name, system_message)
|
||||
self._work_dir = work_dir
|
||||
self._config = self.DEFAULT_CONFIG.copy()
|
||||
self._config.update(config)
|
||||
self._sender_dict = {}
|
||||
|
||||
def receive(self, message, sender):
|
||||
super().receive(message, sender)
|
||||
responses = oai.ChatCompletion.create(messages=self._conversations[sender.name], **self._config)
|
||||
# cost = oai.ChatCompletion.cost(responses)
|
||||
response = oai.ChatCompletion.extract_text(responses)[0]
|
||||
self._send(response, sender)
|
||||
@@ -1,24 +1,28 @@
|
||||
from .agent import Agent
|
||||
from .execution_agent import ExecutionAgent
|
||||
from flaml.autogen.code_utils import generate_code, DEFAULT_MODEL
|
||||
from flaml.autogen.code_utils import DEFAULT_MODEL
|
||||
from flaml import oai
|
||||
|
||||
|
||||
class PythonAgent(Agent):
|
||||
"""(Experimental) Suggest code blocks."""
|
||||
|
||||
DEFAULT_SYSTEM_MESSAGE = """You are a coding agent. You suggest python code for a user to execute for a given task. Don't suggest shell command. Output the code in a coding block. Check the execution result. If the result indicates there is an error, fix the error and output the code again.
|
||||
DEFAULT_SYSTEM_MESSAGE = """You suggest python code (in a python coding block) for a user to execute for a given task. If you want the user to save the code in a file before executing it, put # filename: <filename> inside the code block as the first line. Finish the task smartly. Don't suggest shell command. Don't include multiple code blocks in one response. Use 'print' function for the output when relevant. Check the execution result returned by the user.
|
||||
If the result indicates there is an error, fix the error and output the code again.
|
||||
Reply "TERMINATE" in the end when the task is done.
|
||||
"""
|
||||
|
||||
DEFAULT_CONFIG = {
|
||||
"model": DEFAULT_MODEL,
|
||||
}
|
||||
EXECUTION_AGENT_PREFIX = "execution_agent4"
|
||||
SUCCESS_EXIT_CODE = "exitcode: 0\n"
|
||||
|
||||
def __init__(self, name, system_message=DEFAULT_SYSTEM_MESSAGE, work_dir=None, **config):
|
||||
def __init__(self, name, system_message=DEFAULT_SYSTEM_MESSAGE, **config):
|
||||
"""
|
||||
Args:
|
||||
name (str): agent name
|
||||
system_message (str): system message to be sent to the agent
|
||||
config (dict): other configurations.
|
||||
"""
|
||||
super().__init__(name, system_message)
|
||||
self._work_dir = work_dir
|
||||
self._config = self.DEFAULT_CONFIG.copy()
|
||||
self._config.update(config)
|
||||
self._sender_dict = {}
|
||||
@@ -28,26 +32,10 @@ class PythonAgent(Agent):
|
||||
self._sender_dict[sender.name] = sender
|
||||
self._conversations[sender.name] = [{"content": self._system_message, "role": "system"}]
|
||||
super().receive(message, sender)
|
||||
if sender.name.startswith(self.EXECUTION_AGENT_PREFIX) and message.startswith(self.SUCCESS_EXIT_CODE):
|
||||
# the code is correct, respond to the original sender
|
||||
name = sender.name[len(self.EXECUTION_AGENT_PREFIX) :]
|
||||
original_sender = self._sender_dict[name]
|
||||
output = message[len(self.SUCCESS_EXIT_CODE) :]
|
||||
if output:
|
||||
self._send(f"{output}", original_sender)
|
||||
else:
|
||||
self._send("Done. No output.", original_sender)
|
||||
return
|
||||
responses = oai.ChatCompletion.create(messages=self._conversations[sender.name], **self._config)
|
||||
# cost = oai.ChatCompletion.cost(responses)
|
||||
response = oai.ChatCompletion.extract_text(responses)[0]
|
||||
if sender.name.startswith(self.EXECUTION_AGENT_PREFIX):
|
||||
execution_agent = sender
|
||||
else:
|
||||
# create an execution agent
|
||||
execution_agent = ExecutionAgent(f"{self.EXECUTION_AGENT_PREFIX}{sender.name}", work_dir=self._work_dir)
|
||||
# initialize the conversation
|
||||
self._conversations[execution_agent.name] = self._conversations[sender.name].copy()
|
||||
self._sender_dict[execution_agent.name] = execution_agent
|
||||
# send the response to the execution agent
|
||||
self._send(response, execution_agent)
|
||||
self._send(response, sender)
|
||||
|
||||
def reset(self):
|
||||
self._sender_dict.clear()
|
||||
self._conversations.clear()
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
from .agent import Agent
|
||||
from flaml.autogen.code_utils import execute_code, extract_code
|
||||
|
||||
|
||||
class ExecutionAgent(Agent):
|
||||
"""(Experimental) Perform actions based on instructions from other agents.
|
||||
An execution agent can only communicate with other agents, and perform actions such as executing a command or code.
|
||||
"""
|
||||
|
||||
def __init__(self, name, system_message="", work_dir=None):
|
||||
super().__init__(name, system_message)
|
||||
self._word_dir = work_dir
|
||||
|
||||
def receive(self, message, sender):
|
||||
super().receive(message, sender)
|
||||
# extract code
|
||||
code, lang = extract_code(message)
|
||||
if lang == "bash":
|
||||
assert code.startswith("python ")
|
||||
file_name = code[len("python ") :]
|
||||
exitcode, logs = execute_code(filename=file_name, work_dir=self._word_dir)
|
||||
else:
|
||||
exitcode, logs = execute_code(code, work_dir=self._word_dir)
|
||||
self._send(f"exitcode: {exitcode}\n{logs.decode('utf-8')}", sender)
|
||||
122
flaml/autogen/agent/user_proxy_agent.py
Normal file
122
flaml/autogen/agent/user_proxy_agent.py
Normal file
@@ -0,0 +1,122 @@
|
||||
from .agent import Agent
|
||||
from flaml.autogen.code_utils import extract_code, execute_code
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class UserProxyAgent(Agent):
|
||||
"""(Experimental) A proxy agent for the user, that can execute code and provide feedback to the other agents."""
|
||||
|
||||
MAX_CONSECUTIVE_AUTO_REPLY = 100 # maximum number of consecutive auto replies (subject to future change)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name,
|
||||
system_message="",
|
||||
work_dir=None,
|
||||
human_input_mode="ALWAYS",
|
||||
max_consecutive_auto_reply=None,
|
||||
is_termination_msg=None,
|
||||
use_docker=True,
|
||||
**config,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
name (str): name of the agent
|
||||
system_message (str): system message to be sent to the agent
|
||||
work_dir (str): working directory for the agent
|
||||
human_input_mode (bool): whether to ask for human inputs every time a message is received.
|
||||
Possible values are "ALWAYS", "TERMINATE", "NEVER".
|
||||
(1) When "ALWAYS", the agent prompts for human input every time a message is received.
|
||||
Under this mode, the conversation stops when the human input is "exit",
|
||||
or when is_termination_msg is True and there is no human input.
|
||||
(2) When "TERMINATE", the agent only prompts for human input only when a termination message is received or
|
||||
the number of auto reply reaches the max_consecutive_auto_reply.
|
||||
(3) When "NEVER", the agent will never prompt for human input. Under this mode, the conversation stops
|
||||
when the number of auto reply reaches the max_consecutive_auto_reply or or when is_termination_msg is True.
|
||||
max_consecutive_auto_reply (int): the maximum number of consecutive auto replies.
|
||||
default: None (no limit provided, class attribute MAX_CONSECUTIVE_AUTO_REPLY will be used as the limit in this case).
|
||||
The limit only plays a role when human_input_mode is not "ALWAYS".
|
||||
is_termination_msg (function): a function that takes a message and returns a boolean value.
|
||||
This function is used to determine if a received message is a termination message.
|
||||
config (dict): other configurations.
|
||||
|
||||
"""
|
||||
super().__init__(name, system_message)
|
||||
self._work_dir = work_dir
|
||||
self._human_input_mode = human_input_mode
|
||||
self._is_termination_msg = (
|
||||
is_termination_msg if is_termination_msg is not None else (lambda x: x == "TERMINATE")
|
||||
)
|
||||
self._config = config
|
||||
self._max_consecutive_auto_reply = (
|
||||
max_consecutive_auto_reply if max_consecutive_auto_reply is not None else self.MAX_CONSECUTIVE_AUTO_REPLY
|
||||
)
|
||||
self._consecutive_auto_reply_counter = defaultdict(int)
|
||||
self._use_docker = use_docker
|
||||
|
||||
def _execute_code(self, code, lang):
|
||||
"""Execute the code and return the result."""
|
||||
if lang in ["bash", "shell"]:
|
||||
if not code.startswith("python "):
|
||||
return 1, f"please do not suggest bash or shell commands like {code}"
|
||||
file_name = code[len("python ") :]
|
||||
exitcode, logs = execute_code(filename=file_name, work_dir=self._work_dir, use_docker=self._use_docker)
|
||||
logs = logs.decode("utf-8")
|
||||
elif lang == "python":
|
||||
if code.startswith("# filename: "):
|
||||
filename = code[11 : code.find("\n")].strip()
|
||||
else:
|
||||
filename = None
|
||||
exitcode, logs = execute_code(code, work_dir=self._work_dir, filename=filename, use_docker=self._use_docker)
|
||||
logs = logs.decode("utf-8")
|
||||
else:
|
||||
# TODO: could this happen?
|
||||
exitcode, logs = 1, f"unknown language {lang}"
|
||||
# raise NotImplementedError
|
||||
return exitcode, logs
|
||||
|
||||
def auto_reply(self, message, sender, default_reply=""):
|
||||
"""Generate an auto reply."""
|
||||
code, lang = extract_code(message)
|
||||
if lang == "unknown":
|
||||
# no code block is found, lang should be "unknown"
|
||||
self._send(default_reply, sender)
|
||||
else:
|
||||
# try to execute the code
|
||||
exitcode, logs = self._execute_code(code, lang)
|
||||
exitcode2str = "execution succeeded" if exitcode == 0 else "execution failed"
|
||||
self._send(f"exitcode: {exitcode} ({exitcode2str})\nCode output: {logs}", sender)
|
||||
|
||||
def receive(self, message, sender):
|
||||
"""Receive a message from the sender agent.
|
||||
Once a message is received, this function sends a reply to the sender or simply stop.
|
||||
The reply can be generated automatically or entered manually by a human.
|
||||
"""
|
||||
super().receive(message, sender)
|
||||
# default reply is empty (i.e., no reply, in this case we will try to generate auto reply)
|
||||
reply = ""
|
||||
if self._human_input_mode == "ALWAYS":
|
||||
reply = input(
|
||||
"Provide feedback to the sender. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: "
|
||||
)
|
||||
elif self._consecutive_auto_reply_counter[
|
||||
sender.name
|
||||
] >= self._max_consecutive_auto_reply or self._is_termination_msg(message):
|
||||
if self._human_input_mode == "TERMINATE":
|
||||
reply = input(
|
||||
"Please give feedback to the sender. (Press enter or type 'exit' to stop the conversation): "
|
||||
)
|
||||
reply = reply if reply else "exit"
|
||||
else:
|
||||
# this corresponds to the case when self._human_input_mode == "NEVER"
|
||||
reply = "exit"
|
||||
if reply == "exit" or (self._is_termination_msg(message) and not reply):
|
||||
return
|
||||
elif reply:
|
||||
# reset the consecutive_auto_reply_counter
|
||||
self._consecutive_auto_reply_counter[sender.name] = 0
|
||||
self._send(reply, sender)
|
||||
return
|
||||
|
||||
self._consecutive_auto_reply_counter[sender.name] += 1
|
||||
self.auto_reply(message, sender, default_reply=reply)
|
||||
@@ -37,8 +37,7 @@ def generate_code(pattern: str = CODE_BLOCK_PATTERN, **config) -> Tuple[str, flo
|
||||
float: The cost of the generation.
|
||||
"""
|
||||
response = oai.Completion.create(**config)
|
||||
cost = oai.Completion.cost(response)
|
||||
return extract_code(oai.Completion.extract_text(response)[0], pattern), cost
|
||||
return extract_code(oai.Completion.extract_text(response)[0], pattern), response["cost"]
|
||||
|
||||
|
||||
_IMPROVE_FUNCTION_CONFIG = {
|
||||
@@ -46,7 +45,7 @@ _IMPROVE_FUNCTION_CONFIG = {
|
||||
The current implementation of the function is as follows:
|
||||
{file_string}""",
|
||||
"model": DEFAULT_MODEL,
|
||||
"request_timeout": 300,
|
||||
"request_timeout": 600,
|
||||
}
|
||||
|
||||
|
||||
@@ -59,8 +58,7 @@ def improve_function(file_name, func_name, objective, **config):
|
||||
response = oai.Completion.create(
|
||||
{"func_name": func_name, "objective": objective, "file_string": file_string}, **params
|
||||
)
|
||||
cost = oai.Completion.cost(response)
|
||||
return oai.Completion.extract_text(response)[0], cost
|
||||
return oai.Completion.extract_text(response)[0], response["cost"]
|
||||
|
||||
|
||||
_IMPROVE_CODE_CONFIG = {
|
||||
@@ -97,8 +95,7 @@ def improve_code(files, objective, suggest_only=True, **config):
|
||||
params = {**_IMPROVE_CODE_CONFIG, **config}
|
||||
followup = "" if suggest_only else " followed by the improved code"
|
||||
response = oai.Completion.create({"objective": objective, "code": code, "followup": followup}, **params)
|
||||
cost = oai.Completion.cost(response)
|
||||
return oai.Completion.extract_text(response)[0], cost
|
||||
return oai.Completion.extract_text(response)[0], response["cost"]
|
||||
|
||||
|
||||
def timeout_handler(signum, frame):
|
||||
@@ -281,9 +278,8 @@ def generate_assertions(definition: str, **config) -> Tuple[str, float]:
|
||||
{"definition": definition},
|
||||
**params,
|
||||
)
|
||||
cost = oai.Completion.cost(response)
|
||||
assertions = oai.Completion.extract_text(response)[0]
|
||||
return assertions, cost
|
||||
return assertions, response["cost"]
|
||||
|
||||
|
||||
def _remove_check(response):
|
||||
@@ -387,6 +383,23 @@ _IMPLEMENT_CONFIGS = [
|
||||
]
|
||||
|
||||
|
||||
class PassAssertionFilter:
|
||||
def __init__(self, assertions):
|
||||
self._assertions = assertions
|
||||
self.cost = 0
|
||||
self.metrics = self.responses = None
|
||||
|
||||
def pass_assertions(self, context, response, **_):
|
||||
"""Check if the response passes the assertions."""
|
||||
responses = oai.Completion.extract_text(response)
|
||||
metrics = eval_function_completions(responses, context["definition"], assertions=self._assertions)
|
||||
self._assertions = metrics["assertions"]
|
||||
self.cost += metrics["gen_cost"]
|
||||
self.metrics = metrics
|
||||
self.responses = responses
|
||||
return metrics["succeed_assertions"]
|
||||
|
||||
|
||||
def implement(
|
||||
definition: str,
|
||||
configs: Optional[List[Dict]] = None,
|
||||
@@ -408,12 +421,19 @@ def implement(
|
||||
configs = configs or _IMPLEMENT_CONFIGS
|
||||
if len(configs) > 1 and callable(assertions):
|
||||
assertions, cost = assertions(definition)
|
||||
for i, config in enumerate(configs):
|
||||
response = oai.Completion.create({"definition": definition}, **config)
|
||||
cost += oai.Completion.cost(response)
|
||||
responses = oai.Completion.extract_text(response)
|
||||
metrics = eval_function_completions(responses, definition, assertions=assertions)
|
||||
assertions = metrics["assertions"]
|
||||
cost += metrics["gen_cost"]
|
||||
if metrics["succeed_assertions"] or i == len(configs) - 1:
|
||||
return responses[metrics["index_selected"]], cost, i
|
||||
assertion_filter = PassAssertionFilter(assertions)
|
||||
response = oai.Completion.create(
|
||||
{"definition": definition}, config_list=configs, filter_func=assertion_filter.pass_assertions
|
||||
)
|
||||
cost += assertion_filter.cost + response["cost"]
|
||||
return assertion_filter.responses[assertion_filter.metrics["index_selected"]], cost, response["config_id"]
|
||||
|
||||
# for i, config in enumerate(configs):
|
||||
# response = oai.Completion.create({"definition": definition}, **config)
|
||||
# cost += oai.Completion.cost(response)
|
||||
# responses = oai.Completion.extract_text(response)
|
||||
# metrics = eval_function_completions(responses, definition, assertions=assertions)
|
||||
# assertions = metrics["assertions"]
|
||||
# cost += metrics["gen_cost"]
|
||||
# if metrics["succeed_assertions"] or i == len(configs) - 1:
|
||||
# return responses[metrics["index_selected"]], cost, i
|
||||
|
||||
@@ -20,9 +20,8 @@ def solve_problem(problem: str, **config) -> str:
|
||||
"""
|
||||
params = {**_MATH_CONFIG, **config}
|
||||
response = oai.Completion.create({"problem": problem}, **params)
|
||||
cost = oai.Completion.cost(response)
|
||||
results = eval_math_responses(oai.Completion.extract_text(response))
|
||||
return results.get("voted_answer"), cost
|
||||
return results.get("voted_answer"), response["cost"]
|
||||
|
||||
|
||||
def remove_boxed(string: str) -> Optional[str]:
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from flaml.autogen.oai.completion import Completion, ChatCompletion
|
||||
from flaml.autogen.oai.openai_utils import get_config_list, config_list_gpt4_gpt35, config_list_openai_aoai
|
||||
|
||||
__all__ = ["Completion", "ChatCompletion"]
|
||||
__all__ = ["Completion", "ChatCompletion", "get_config_list", "config_list_gpt4_gpt35", "config_list_openai_aoai"]
|
||||
|
||||
@@ -2,11 +2,13 @@ from time import sleep
|
||||
import logging
|
||||
import numpy as np
|
||||
import time
|
||||
from typing import List, Optional, Dict
|
||||
from typing import List, Optional, Dict, Callable, Any
|
||||
import sys
|
||||
import json
|
||||
import shutil
|
||||
from flaml import tune, BlendSearch
|
||||
from flaml.tune.space import is_constant
|
||||
from flaml.automl.logger import logger_formatter
|
||||
from .openai_utils import get_key
|
||||
|
||||
try:
|
||||
import openai
|
||||
@@ -17,6 +19,7 @@ try:
|
||||
InvalidRequestError,
|
||||
APIConnectionError,
|
||||
Timeout,
|
||||
AuthenticationError,
|
||||
)
|
||||
from openai import Completion as openai_Completion
|
||||
import diskcache
|
||||
@@ -33,23 +36,6 @@ if not logger.handlers:
|
||||
logger.addHandler(_ch)
|
||||
|
||||
|
||||
def get_key(config):
|
||||
"""Get a unique identifier of a configuration.
|
||||
|
||||
Args:
|
||||
config (dict or list): A configuration.
|
||||
|
||||
Returns:
|
||||
tuple: A unique identifier which can be used as a key for a dict.
|
||||
"""
|
||||
# if isinstance(config, dict):
|
||||
# return tuple(get_key(x) for x in sorted(config.items()))
|
||||
# if isinstance(config, list):
|
||||
# return tuple(get_key(x) for x in config)
|
||||
# return config
|
||||
return json.dumps(config, sort_keys=True)
|
||||
|
||||
|
||||
class Completion(openai_Completion):
|
||||
"""A class for OpenAI completion API.
|
||||
|
||||
@@ -97,7 +83,7 @@ class Completion(openai_Completion):
|
||||
),
|
||||
"temperature_or_top_p": tune.choice(
|
||||
[
|
||||
{"temperature": tune.uniform(0, 1)},
|
||||
{"temperature": tune.uniform(0, 2)},
|
||||
{"top_p": tune.uniform(0, 1)},
|
||||
]
|
||||
),
|
||||
@@ -122,7 +108,7 @@ class Completion(openai_Completion):
|
||||
_history_dict = _count_create = None
|
||||
|
||||
@classmethod
|
||||
def set_cache(cls, seed=41, cache_path=".cache"):
|
||||
def set_cache(cls, seed: Optional[int] = 41, cache_path_root: Optional[str] = ".cache"):
|
||||
"""Set cache path.
|
||||
|
||||
Args:
|
||||
@@ -132,11 +118,29 @@ class Completion(openai_Completion):
|
||||
The complete cache path will be {cache_path}/{seed}.
|
||||
"""
|
||||
cls.seed = seed
|
||||
cls.cache_path = f"{cache_path}/{seed}"
|
||||
cls.cache_path = f"{cache_path_root}/{seed}"
|
||||
|
||||
@classmethod
|
||||
def clear_cache(cls, seed: Optional[int] = None, cache_path_root: Optional[str] = ".cache"):
|
||||
"""Clear cache.
|
||||
|
||||
Args:
|
||||
seed (int, Optional): The integer identifier for the pseudo seed.
|
||||
If omitted, all caches under cache_path_root will be cleared.
|
||||
cache_path (str, Optional): The root path for the cache.
|
||||
The complete cache path will be {cache_path}/{seed}.
|
||||
"""
|
||||
if seed is None:
|
||||
shutil.rmtree(cache_path_root, ignore_errors=True)
|
||||
return
|
||||
with diskcache.Cache(f"{cache_path_root}/{seed}") as cache:
|
||||
cache.clear()
|
||||
|
||||
@classmethod
|
||||
def _book_keeping(cls, config: Dict, response):
|
||||
"""Book keeping for the created completions."""
|
||||
if response != -1 and "cost" not in response:
|
||||
response["cost"] = cls.cost(response)
|
||||
if cls._history_dict is None:
|
||||
return
|
||||
if cls._history_compact:
|
||||
@@ -153,7 +157,7 @@ class Completion(openai_Completion):
|
||||
else:
|
||||
key = get_key([config["prompt"]] + [choice.get("text") for choice in response["choices"]])
|
||||
value["created_at"].append(cls._count_create)
|
||||
value["cost"].append(cls.cost(response))
|
||||
value["cost"].append(response["cost"])
|
||||
cls._history_dict[key] = value
|
||||
cls._count_create += 1
|
||||
return
|
||||
@@ -164,25 +168,25 @@ class Completion(openai_Completion):
|
||||
cls._count_create += 1
|
||||
|
||||
@classmethod
|
||||
def _get_response(cls, config: Dict, eval_only=False, use_cache=True):
|
||||
def _get_response(cls, config: Dict, raise_error=False, use_cache=True):
|
||||
"""Get the response from the openai api call.
|
||||
|
||||
Try cache first. If not found, call the openai api. If the api call fails, retry after retry_time.
|
||||
"""
|
||||
config = config.copy()
|
||||
openai.api_key = config.pop("api_key", openai.api_key)
|
||||
openai.api_base = config.pop("api_base", openai.api_base)
|
||||
openai.api_key_path = config.pop("api_key_path", openai.api_key_path)
|
||||
openai.api_type = config.pop("api_type", openai.api_type)
|
||||
openai.api_version = config.pop("api_version", openai.api_version)
|
||||
key = get_key(config)
|
||||
if use_cache:
|
||||
response = cls._cache.get(key, None)
|
||||
if response is not None and (response != -1 or not eval_only):
|
||||
if response is not None and (response != -1 or not raise_error):
|
||||
# print("using cached response")
|
||||
cls._book_keeping(config, response)
|
||||
return response
|
||||
openai_completion = openai.ChatCompletion if config["model"] in cls.chat_models else openai.Completion
|
||||
openai_completion = (
|
||||
openai.ChatCompletion
|
||||
if config["model"] in cls.chat_models or issubclass(cls, ChatCompletion)
|
||||
else openai.Completion
|
||||
)
|
||||
start_time = time.time()
|
||||
request_timeout = cls.request_timeout
|
||||
while True:
|
||||
@@ -196,7 +200,7 @@ class Completion(openai_Completion):
|
||||
APIConnectionError,
|
||||
):
|
||||
# transient error
|
||||
logger.warning(f"retrying in {cls.retry_time} seconds...", exc_info=1)
|
||||
logger.info(f"retrying in {cls.retry_time} seconds...", exc_info=1)
|
||||
sleep(cls.retry_time)
|
||||
except APIError as err:
|
||||
error_code = err and err.json_body and err.json_body.get("error")
|
||||
@@ -204,7 +208,7 @@ class Completion(openai_Completion):
|
||||
if error_code == "content_filter":
|
||||
raise
|
||||
# transient error
|
||||
logger.warning(f"retrying in {cls.retry_time} seconds...", exc_info=1)
|
||||
logger.info(f"retrying in {cls.retry_time} seconds...", exc_info=1)
|
||||
sleep(cls.retry_time)
|
||||
except (RateLimitError, Timeout) as err:
|
||||
time_left = cls.retry_timeout - (time.time() - start_time + cls.retry_time)
|
||||
@@ -215,10 +219,16 @@ class Completion(openai_Completion):
|
||||
and isinstance(err, Timeout)
|
||||
):
|
||||
logger.info(f"retrying in {cls.retry_time} seconds...", exc_info=1)
|
||||
elif eval_only:
|
||||
elif raise_error:
|
||||
raise
|
||||
else:
|
||||
break
|
||||
response = -1
|
||||
if use_cache and isinstance(err, Timeout):
|
||||
cls._cache.set(key, response)
|
||||
logger.warning(
|
||||
f"Failed to get response from openai api due to getting RateLimitError or Timeout for {cls.retry_timeout} seconds."
|
||||
)
|
||||
return response
|
||||
if isinstance(err, Timeout):
|
||||
if "request_timeout" in config:
|
||||
raise
|
||||
@@ -226,7 +236,7 @@ class Completion(openai_Completion):
|
||||
request_timeout = min(request_timeout, time_left)
|
||||
sleep(cls.retry_time)
|
||||
except InvalidRequestError:
|
||||
if "azure" == openai.api_type and "model" in config:
|
||||
if "azure" == config.get("api_type", openai.api_type) and "model" in config:
|
||||
# azure api uses "engine" instead of "model"
|
||||
config["engine"] = config.pop("model").replace("gpt-3.5-turbo", "gpt-35-turbo")
|
||||
else:
|
||||
@@ -236,13 +246,6 @@ class Completion(openai_Completion):
|
||||
cls._cache.set(key, response)
|
||||
cls._book_keeping(config, response)
|
||||
return response
|
||||
logger.warning(
|
||||
f"Failed to get response from openai api due to getting RateLimitError or Timeout for {cls.retry_timeout} seconds."
|
||||
)
|
||||
response = -1
|
||||
if use_cache:
|
||||
cls._cache.set(key, response)
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def _get_max_valid_n(cls, key, max_tokens):
|
||||
@@ -265,6 +268,7 @@ class Completion(openai_Completion):
|
||||
@classmethod
|
||||
def _get_region_key(cls, config):
|
||||
# get a key for the valid/invalid region corresponding to the given config
|
||||
config = cls._pop_subspace(config, always_copy=False)
|
||||
return (
|
||||
config["model"],
|
||||
config.get("prompt", config.get("messages")),
|
||||
@@ -281,31 +285,28 @@ class Completion(openai_Completion):
|
||||
invalid_n[max_tokens] = min(num_completions, invalid_n.get(max_tokens, np.inf))
|
||||
|
||||
@classmethod
|
||||
def _pop_subspace(cls, config):
|
||||
def _pop_subspace(cls, config, always_copy=True):
|
||||
if "subspace" in config:
|
||||
config = config.copy()
|
||||
config.update(config.pop("subspace"))
|
||||
return config
|
||||
return config.copy() if always_copy else config
|
||||
|
||||
@classmethod
|
||||
def _get_prompt_messages_from_config(cls, model, config):
|
||||
prompt, messages = None, None
|
||||
if model in cls.chat_models:
|
||||
# either "prompt" should be in config (for being compatible with non-chat models)
|
||||
# or "messages" should be in config (for tuning chat models only)
|
||||
prompt = config.get("prompt")
|
||||
messages = config.get("messages")
|
||||
# either prompt or messages should be in config, but not both
|
||||
assert (prompt is None) != (
|
||||
messages is None
|
||||
), "Either prompt or messages should be in config for chat models."
|
||||
if prompt is None:
|
||||
messages = cls._messages[messages]
|
||||
else:
|
||||
prompt = cls._prompts[prompt]
|
||||
def _get_params_for_create(cls, config: Dict) -> Dict:
|
||||
"""Get the params for the openai api call from a config in the search space."""
|
||||
params = cls._pop_subspace(config)
|
||||
if cls._prompts:
|
||||
params["prompt"] = cls._prompts[config["prompt"]]
|
||||
else:
|
||||
prompt = cls._prompts[config["prompt"]]
|
||||
return prompt, messages
|
||||
params["messages"] = cls._messages[config["messages"]]
|
||||
if "stop" in params:
|
||||
params["stop"] = cls._stops and cls._stops[params["stop"]]
|
||||
temperature_or_top_p = params.pop("temperature_or_top_p", None)
|
||||
if temperature_or_top_p:
|
||||
params.update(temperature_or_top_p)
|
||||
if cls._config_list and "config_list" not in params:
|
||||
params["config_list"] = cls._config_list
|
||||
return params
|
||||
|
||||
@classmethod
|
||||
def _eval(cls, config: dict, prune=True, eval_only=False):
|
||||
@@ -314,7 +315,8 @@ class Completion(openai_Completion):
|
||||
Args:
|
||||
config (dict): Hyperparameter setting for the openai api call.
|
||||
prune (bool, optional): Whether to enable pruning. Defaults to True.
|
||||
eval_only (bool, optional): Whether to evaluate only (ignore the inference budget and no timeout).
|
||||
eval_only (bool, optional): Whether to evaluate only
|
||||
(ignore the inference budget and do not rasie error when a request fails).
|
||||
Defaults to False.
|
||||
|
||||
Returns:
|
||||
@@ -322,18 +324,18 @@ class Completion(openai_Completion):
|
||||
"""
|
||||
cost = 0
|
||||
data = cls.data
|
||||
config = cls._pop_subspace(config)
|
||||
model = config["model"]
|
||||
params = cls._get_params_for_create(config)
|
||||
model = params["model"]
|
||||
data_length = len(data)
|
||||
price = cls.price1K.get(model)
|
||||
price_input, price_output = price if isinstance(price, tuple) else (price, price)
|
||||
inference_budget = getattr(cls, "inference_budget", None)
|
||||
prune_hp = getattr(cls, "_prune_hp", "n")
|
||||
metric = cls._metric
|
||||
config_n = config.get(prune_hp, 1) # default value in OpenAI is 1
|
||||
max_tokens = config.get("max_tokens", np.inf if model in cls.chat_models else 16)
|
||||
prompt, messages = cls._get_prompt_messages_from_config(model, config)
|
||||
stop = cls._stops and cls._stops[config["stop"]]
|
||||
config_n = params.get(prune_hp, 1) # default value in OpenAI is 1
|
||||
max_tokens = params.get(
|
||||
"max_tokens", np.inf if model in cls.chat_models or issubclass(cls, ChatCompletion) else 16
|
||||
)
|
||||
target_output_tokens = None
|
||||
if not cls.avg_input_tokens:
|
||||
input_tokens = [None] * data_length
|
||||
@@ -364,12 +366,6 @@ class Completion(openai_Completion):
|
||||
else:
|
||||
start_n = config_n
|
||||
region_key = None
|
||||
params = config.copy()
|
||||
if "stop" in config:
|
||||
params["stop"] = stop
|
||||
temperature_or_top_p = params.pop("temperature_or_top_p", None)
|
||||
if temperature_or_top_p:
|
||||
params.update(temperature_or_top_p)
|
||||
num_completions, previous_num_completions = start_n, 0
|
||||
n_tokens_list, result, responses_list = [], {}, []
|
||||
while True: # n <= config_n
|
||||
@@ -382,9 +378,9 @@ class Completion(openai_Completion):
|
||||
for i in range(prev_data_limit, data_limit):
|
||||
logger.debug(f"num_completions={num_completions}, data instance={i}")
|
||||
data_i = data[i]
|
||||
params = cls._construct_params(data_i, params, prompt, messages)
|
||||
response = cls._get_response(params, eval_only)
|
||||
if response == -1: # rate limit error, treat as invalid
|
||||
# params = cls._construct_params(data_i, params, prompt, messages)
|
||||
response = cls.create(data_i, raise_error=eval_only, **params)
|
||||
if response == -1: # rate limit/timeout error, treat as invalid
|
||||
cls._update_invalid_n(prune, region_key, max_tokens, num_completions)
|
||||
result[metric] = 0
|
||||
result["cost"] = cost
|
||||
@@ -397,7 +393,7 @@ class Completion(openai_Completion):
|
||||
if not cls.avg_input_tokens and not input_tokens[i]:
|
||||
# store the # input tokens
|
||||
input_tokens[i] = n_input_tokens
|
||||
query_cost = (price_input * n_input_tokens + price_output * n_output_tokens) / 1000
|
||||
query_cost = response["cost"]
|
||||
cls._total_cost += query_cost
|
||||
cost += query_cost
|
||||
if cls.optimization_budget and cls._total_cost >= cls.optimization_budget and not eval_only:
|
||||
@@ -488,15 +484,15 @@ class Completion(openai_Completion):
|
||||
@classmethod
|
||||
def tune(
|
||||
cls,
|
||||
data,
|
||||
metric,
|
||||
mode,
|
||||
eval_func,
|
||||
log_file_name=None,
|
||||
inference_budget=None,
|
||||
optimization_budget=None,
|
||||
num_samples=1,
|
||||
logging_level=logging.WARNING,
|
||||
data: List[Dict],
|
||||
metric: str,
|
||||
mode: str,
|
||||
eval_func: Callable,
|
||||
log_file_name: Optional[str] = None,
|
||||
inference_budget: Optional[float] = None,
|
||||
optimization_budget: Optional[float] = None,
|
||||
num_samples: Optional[int] = 1,
|
||||
logging_level: Optional[int] = logging.WARNING,
|
||||
**config,
|
||||
):
|
||||
"""Tune the parameters for the OpenAI API call.
|
||||
@@ -596,6 +592,11 @@ class Completion(openai_Completion):
|
||||
if not (isinstance(cls._stops, list) and isinstance(cls._stops[0], list)):
|
||||
cls._stops = [cls._stops]
|
||||
space["stop"] = tune.choice(list(range(len(cls._stops))))
|
||||
cls._config_list = space.get("config_list")
|
||||
if cls._config_list is not None:
|
||||
is_const = is_constant(cls._config_list)
|
||||
if is_const:
|
||||
space.pop("config_list")
|
||||
cls._metric, cls._mode = metric, mode
|
||||
cls._total_cost = 0 # total optimization cost
|
||||
cls._eval_func = eval_func
|
||||
@@ -662,16 +663,9 @@ class Completion(openai_Completion):
|
||||
verbose=3,
|
||||
)
|
||||
config = analysis.best_config
|
||||
params = cls._pop_subspace(config)
|
||||
if cls._prompts:
|
||||
params["prompt"] = cls._prompts[config["prompt"]]
|
||||
else:
|
||||
params["messages"] = cls._messages[config["messages"]]
|
||||
stop = cls._stops and cls._stops[config["stop"]]
|
||||
params["stop"] = stop
|
||||
temperature_or_top_p = params.pop("temperature_or_top_p", None)
|
||||
if temperature_or_top_p:
|
||||
params.update(temperature_or_top_p)
|
||||
params = cls._get_params_for_create(config)
|
||||
if cls._config_list is not None and is_const:
|
||||
params.pop("config_list")
|
||||
logger.setLevel(old_level)
|
||||
return params, analysis
|
||||
|
||||
@@ -680,14 +674,16 @@ class Completion(openai_Completion):
|
||||
cls,
|
||||
context: Optional[Dict] = None,
|
||||
use_cache: Optional[bool] = True,
|
||||
config_list: Optional[List] = None,
|
||||
config_list: Optional[List[Dict]] = None,
|
||||
filter_func: Optional[Callable[[Dict, Dict, Dict], bool]] = None,
|
||||
raise_error: Optional[bool] = True,
|
||||
**config,
|
||||
):
|
||||
"""Make a completion for a given context.
|
||||
|
||||
Args:
|
||||
context (Dict, Optional): The context to instantiate the prompt.
|
||||
It needs to contain keys that are used by the prompt template.
|
||||
It needs to contain keys that are used by the prompt template or the filter function.
|
||||
E.g., `prompt="Complete the following sentence: {prefix}, context={"prefix": "Today I feel"}`.
|
||||
The actual prompt will be:
|
||||
"Complete the following sentence: Today I feel".
|
||||
@@ -713,19 +709,28 @@ class Completion(openai_Completion):
|
||||
"api_key": os.environ.get("OPENAI_API_KEY"),
|
||||
"api_type": "open_ai",
|
||||
"api_base": "https://api.openai.com/v1",
|
||||
"api_version": None,
|
||||
},
|
||||
{
|
||||
"model": "llama-7B",
|
||||
"api_base": "http://127.0.0.1:8080",
|
||||
"api_type": "open_ai",
|
||||
"api_version": None,
|
||||
}
|
||||
],
|
||||
prompt="Hi",
|
||||
)
|
||||
```
|
||||
|
||||
filter_func (Callable, Optional): A function that takes in the context, the config and the response and returns a boolean to indicate whether the response is valid. E.g.,
|
||||
|
||||
```python
|
||||
def yes_or_no_filter(context, config, response):
|
||||
return context.get("yes_or_no_choice", False) is False or any(
|
||||
text in ["Yes.", "No."] for text in oai.Completion.extract_text(response)
|
||||
)
|
||||
```
|
||||
|
||||
raise_error (bool, Optional): Whether to raise error when all configs fail.
|
||||
When set to False, -1 will be returned when all configs fail.
|
||||
**config: Configuration for the completion.
|
||||
Besides the parameters for the openai API call, it can also contain a seed (int) for the cache.
|
||||
This is useful when implementing "controlled randomness" for the completion.
|
||||
@@ -738,28 +743,39 @@ class Completion(openai_Completion):
|
||||
raise ERROR
|
||||
if config_list:
|
||||
retry_timeout = cls.retry_timeout
|
||||
last = len(config_list) - 1
|
||||
cost = 0
|
||||
for i, each_config in enumerate(config_list):
|
||||
base_config = config.copy()
|
||||
base_config.update(each_config)
|
||||
try:
|
||||
cls.retry_timeout = 0 if i < len(config_list) - 1 else retry_timeout
|
||||
# retry_timeout = 0 to avoid retrying
|
||||
return cls.create(context, use_cache, **base_config)
|
||||
except (RateLimitError, Timeout):
|
||||
logger.info(f"failed with config {i}", exc_info=1)
|
||||
if i == len(config_list) - 1:
|
||||
cls.retry_timeout = 0 if i < last and filter_func is None else retry_timeout
|
||||
# retry_timeout = 0 to avoid retrying when no filter is given
|
||||
response = cls.create(context, use_cache, **base_config)
|
||||
pass_filter = filter_func is None or filter_func(
|
||||
context=context, base_config=config, response=response
|
||||
)
|
||||
if pass_filter or i == last:
|
||||
response["cost"] = cost + response["cost"]
|
||||
response["config_id"] = i
|
||||
response["pass_filter"] = pass_filter
|
||||
return response
|
||||
cost += response["cost"]
|
||||
except (AuthenticationError, RateLimitError, Timeout):
|
||||
logger.debug(f"failed with config {i}", exc_info=1)
|
||||
if i == last:
|
||||
raise
|
||||
finally:
|
||||
cls.retry_timeout = retry_timeout
|
||||
params = cls._construct_params(context, config)
|
||||
if not use_cache:
|
||||
return cls._get_response(params, eval_only=True, use_cache=False)
|
||||
return cls._get_response(params, raise_error=raise_error, use_cache=False)
|
||||
seed = cls.seed
|
||||
if "seed" in params:
|
||||
cls.set_cache(params.pop("seed"))
|
||||
with diskcache.Cache(cls.cache_path) as cls._cache:
|
||||
cls.set_cache(seed)
|
||||
return cls._get_response(params, eval_only=True)
|
||||
return cls._get_response(params, raise_error=raise_error)
|
||||
|
||||
@classmethod
|
||||
def _instantiate(cls, template: str, context: Optional[Dict] = None):
|
||||
@@ -777,7 +793,7 @@ class Completion(openai_Completion):
|
||||
messages = config.get("messages") if messages is None else messages
|
||||
# either "prompt" should be in config (for being compatible with non-chat models)
|
||||
# or "messages" should be in config (for tuning chat models only)
|
||||
if prompt is None and model in cls.chat_models:
|
||||
if prompt is None and (model in cls.chat_models or issubclass(cls, ChatCompletion)):
|
||||
if messages is None:
|
||||
raise ValueError("Either prompt or messages should be in config for chat models.")
|
||||
if prompt is None:
|
||||
@@ -792,7 +808,7 @@ class Completion(openai_Completion):
|
||||
if data_instance
|
||||
else messages
|
||||
)
|
||||
elif model in cls.chat_models:
|
||||
elif model in cls.chat_models or issubclass(cls, ChatCompletion):
|
||||
# convert prompt to messages
|
||||
params["messages"] = [
|
||||
{
|
||||
@@ -809,18 +825,17 @@ class Completion(openai_Completion):
|
||||
def test(
|
||||
cls,
|
||||
data,
|
||||
config,
|
||||
eval_func=None,
|
||||
use_cache=True,
|
||||
agg_method="avg",
|
||||
return_responses_and_per_instance_result=False,
|
||||
logging_level=logging.WARNING,
|
||||
**config,
|
||||
):
|
||||
"""Evaluate the responses created with the config for the OpenAI API call.
|
||||
|
||||
Args:
|
||||
data (list): The list of test data points.
|
||||
config (dict): Hyperparameter setting for the openai api call.
|
||||
eval_func (Callable): The evaluation function for responses per data instance.
|
||||
The function should take a list of responses and a data point as input,
|
||||
and return a dict of metrics. You need to either provide a valid callable
|
||||
@@ -866,6 +881,7 @@ class Completion(openai_Completion):
|
||||
return_responses_and_per_instance_result (bool): Whether to also return responses
|
||||
and per instance results in addition to the aggregated results.
|
||||
logging_level (optional): logging level. Defaults to logging.WARNING.
|
||||
**config (dict): parametes passed to the openai api call `create()`.
|
||||
|
||||
Returns:
|
||||
None when no valid eval_func is provided in either test or tune;
|
||||
@@ -880,7 +896,7 @@ class Completion(openai_Completion):
|
||||
for i, data_i in enumerate(data):
|
||||
logger.info(f"evaluating data instance {i}")
|
||||
response = cls.create(data_i, use_cache, **config)
|
||||
cost += cls.cost(response)
|
||||
cost += response["cost"]
|
||||
# evaluate the quality of the responses
|
||||
responses = cls.extract_text(response)
|
||||
if eval_func is not None:
|
||||
@@ -946,11 +962,12 @@ class Completion(openai_Completion):
|
||||
response (dict): The response from OpenAI API.
|
||||
|
||||
Returns:
|
||||
The cost in USD.
|
||||
The cost in USD. 0 if the model is not supported.
|
||||
"""
|
||||
model = response["model"]
|
||||
if model not in cls.price1K:
|
||||
raise ValueError(f"Unknown model: {model}")
|
||||
return 0
|
||||
# raise ValueError(f"Unknown model: {model}")
|
||||
usage = response["usage"]
|
||||
n_input_tokens = usage["prompt_tokens"]
|
||||
n_output_tokens = usage.get("completion_tokens", 0)
|
||||
|
||||
142
flaml/autogen/oai/openai_utils.py
Normal file
142
flaml/autogen/oai/openai_utils.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import os
|
||||
import json
|
||||
from typing import List, Optional, Dict
|
||||
import logging
|
||||
|
||||
NON_CACHE_KEY = ["api_key", "api_base", "api_type", "api_version"]
|
||||
|
||||
|
||||
def get_key(config):
|
||||
"""Get a unique identifier of a configuration.
|
||||
|
||||
Args:
|
||||
config (dict or list): A configuration.
|
||||
|
||||
Returns:
|
||||
tuple: A unique identifier which can be used as a key for a dict.
|
||||
"""
|
||||
copied = False
|
||||
for key in NON_CACHE_KEY:
|
||||
if key in config:
|
||||
config, copied = config.copy() if not copied else config, True
|
||||
config.pop(key)
|
||||
# if isinstance(config, dict):
|
||||
# return tuple(get_key(x) for x in sorted(config.items()))
|
||||
# if isinstance(config, list):
|
||||
# return tuple(get_key(x) for x in config)
|
||||
# return config
|
||||
return json.dumps(config, sort_keys=True)
|
||||
|
||||
|
||||
def get_config_list(
|
||||
api_keys: List, api_bases: Optional[List] = None, api_type: Optional[str] = None, api_version: Optional[str] = None
|
||||
) -> List[Dict]:
|
||||
"""Get a list of configs for openai api calls.
|
||||
|
||||
Args:
|
||||
api_keys (list): The api keys for openai api calls.
|
||||
api_bases (list, optional): The api bases for openai api calls.
|
||||
api_type (str, optional): The api type for openai api calls.
|
||||
api_version (str, optional): The api version for openai api calls.
|
||||
"""
|
||||
config_list = []
|
||||
for i, api_key in enumerate(api_keys):
|
||||
if not api_key.strip():
|
||||
continue
|
||||
config = {"api_key": api_key}
|
||||
if api_bases:
|
||||
config["api_base"] = api_bases[i]
|
||||
if api_type:
|
||||
config["api_type"] = api_type
|
||||
if api_version:
|
||||
config["api_version"] = api_version
|
||||
config_list.append(config)
|
||||
return config_list
|
||||
|
||||
|
||||
def config_list_openai_aoai(
|
||||
key_file_path: Optional[str] = ".",
|
||||
openai_api_key_file: Optional[str] = "key_openai.txt",
|
||||
aoai_api_key_file: Optional[str] = "key_aoai.txt",
|
||||
aoai_api_base_file: Optional[str] = "base_aoai.txt",
|
||||
) -> List[Dict]:
|
||||
"""Get a list of configs for openai + azure openai api calls.
|
||||
|
||||
Args:
|
||||
key_file_path (str, optional): The path to the key files.
|
||||
openai_api_key_file (str, optional): The file name of the openai api key.
|
||||
aoai_api_key_file (str, optional): The file name of the azure openai api key.
|
||||
aoai_api_base_file (str, optional): The file name of the azure openai api base.
|
||||
|
||||
Returns:
|
||||
list: A list of configs for openai api calls.
|
||||
"""
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
try:
|
||||
os.environ["OPENAI_API_KEY"] = open(f"{key_file_path}/{openai_api_key_file}").read().strip()
|
||||
except FileNotFoundError:
|
||||
logging.info(
|
||||
"To use OpenAI API, please set OPENAI_API_KEY in os.environ "
|
||||
"or create key_openai.txt in the specified path, or specify the api_key in config_list."
|
||||
)
|
||||
if "AZURE_OPENAI_API_KEY" not in os.environ:
|
||||
try:
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = open(f"{key_file_path}/{aoai_api_key_file}").read().strip()
|
||||
except FileNotFoundError:
|
||||
logging.info(
|
||||
"To use Azure OpenAI API, please set AZURE_OPENAI_API_KEY in os.environ "
|
||||
"or create key_aoai.txt in the specified path, or specify the api_key in config_list."
|
||||
)
|
||||
if "AZURE_OPENAI_API_BASE" not in os.environ:
|
||||
try:
|
||||
os.environ["AZURE_OPENAI_API_BASE"] = open(f"{key_file_path}/{aoai_api_base_file}").read().strip()
|
||||
except FileNotFoundError:
|
||||
logging.info(
|
||||
"To use Azure OpenAI API, please set AZURE_OPENAI_API_BASE in os.environ "
|
||||
"or create base_aoai.txt in the specified path, or specify the api_base in config_list."
|
||||
)
|
||||
aoai_config = get_config_list(
|
||||
# Assuming Azure OpenAI api keys in os.environ["AZURE_OPENAI_API_KEY"], in separated lines
|
||||
api_keys=os.environ.get("AZURE_OPENAI_API_KEY", "").split("\n"),
|
||||
# Assuming Azure OpenAI api bases in os.environ["AZURE_OPENAI_API_BASE"], in separated lines
|
||||
api_bases=os.environ.get("AZURE_OPENAI_API_BASE", "").split("\n"),
|
||||
api_type="azure",
|
||||
api_version="2023-03-15-preview", # change if necessary
|
||||
)
|
||||
openai_config = get_config_list(
|
||||
# Assuming OpenAI API_KEY in os.environ["OPENAI_API_KEY"]
|
||||
api_keys=os.environ.get("OPENAI_API_KEY", "").split("\n"),
|
||||
# "api_type": "open_ai",
|
||||
# "api_base": "https://api.openai.com/v1",
|
||||
)
|
||||
config_list = openai_config + aoai_config
|
||||
return config_list
|
||||
|
||||
|
||||
def config_list_gpt4_gpt35(
|
||||
key_file_path: Optional[str] = ".",
|
||||
openai_api_key_file: Optional[str] = "key_openai.txt",
|
||||
aoai_api_key_file: Optional[str] = "key_aoai.txt",
|
||||
aoai_api_base_file: Optional[str] = "base_aoai.txt",
|
||||
) -> List[Dict]:
|
||||
"""Get a list of configs for gpt-4 followed by gpt-3.5 api calls.
|
||||
|
||||
Args:
|
||||
key_file_path (str, optional): The path to the key files.
|
||||
openai_api_key_file (str, optional): The file name of the openai api key.
|
||||
aoai_api_key_file (str, optional): The file name of the azure openai api key.
|
||||
aoai_api_base_file (str, optional): The file name of the azure openai api base.
|
||||
|
||||
Returns:
|
||||
list: A list of configs for openai api calls.
|
||||
"""
|
||||
|
||||
config_list = config_list_openai_aoai(
|
||||
key_file_path,
|
||||
openai_api_key_file,
|
||||
aoai_api_key_file,
|
||||
aoai_api_base_file,
|
||||
)
|
||||
return [{**config, "model": "gpt-4"} for config in config_list] + [
|
||||
{**config, "model": "gpt-3.5-turbo"} for config in config_list
|
||||
]
|
||||
@@ -11,7 +11,7 @@ try:
|
||||
except (ImportError, AssertionError):
|
||||
from . import sample
|
||||
from .searcher.variant_generator import generate_variants
|
||||
from typing import Dict, Optional, Any, Tuple, Generator
|
||||
from typing import Dict, Optional, Any, Tuple, Generator, List, Union
|
||||
import numpy as np
|
||||
import logging
|
||||
|
||||
@@ -27,6 +27,29 @@ def generate_variants_compatible(
|
||||
return generate_variants(unresolved_spec, constant_grid_search)
|
||||
|
||||
|
||||
def is_constant(space: Union[Dict, List]) -> bool:
|
||||
"""Whether the search space is all constant.
|
||||
|
||||
Returns:
|
||||
A bool of whether the search space is all constant.
|
||||
"""
|
||||
if isinstance(space, dict):
|
||||
for domain in space.values():
|
||||
if isinstance(domain, (dict, list)):
|
||||
if not is_constant(domain):
|
||||
return False
|
||||
continue
|
||||
if isinstance(domain, sample.Domain):
|
||||
return False
|
||||
return True
|
||||
elif isinstance(space, list):
|
||||
for item in space:
|
||||
if not is_constant(item):
|
||||
return False
|
||||
return True
|
||||
return not isinstance(space, sample.Domain)
|
||||
|
||||
|
||||
def define_by_run_func(trial, space: Dict, path: str = "") -> Optional[Dict[str, Any]]:
|
||||
"""Define-by-run function to create the search space.
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = "1.2.3"
|
||||
__version__ = "1.2.4"
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
1682
notebook/autogen_chatgpt_gpt4.ipynb
Normal file
1682
notebook/autogen_chatgpt_gpt4.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
@@ -757,7 +757,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# result = oai.Completion.test(test_data, config)\n",
|
||||
"# result = oai.Completion.test(test_data, **config)\n",
|
||||
"# print(\"performance on test data with the tuned config:\", result)"
|
||||
]
|
||||
},
|
||||
@@ -313,7 +313,7 @@
|
||||
"source": [
|
||||
"### Evaluate the success rate on the test data\n",
|
||||
"\n",
|
||||
"You can use flaml's `oai.ChatCompletion.test` to evaluate the performance of an entire dataset with the tuned config."
|
||||
"You can use flaml's `oai.ChatCompletion.test` to evaluate the performance of an entire dataset with a config."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -325,7 +325,7 @@
|
||||
"import logging\n",
|
||||
"\n",
|
||||
"config_n1 = {\"model\": 'gpt-4', \"prompt\": prompt, \"max_tokens\": 600, \"n\": 1}\n",
|
||||
"n1_result = oai.ChatCompletion.test(test_data[:50], config_n1, eval_math_responses)\n",
|
||||
"n1_result = oai.ChatCompletion.test(test_data[:50], eval_math_responses, **config_n1)\n",
|
||||
"print(n1_result)"
|
||||
]
|
||||
},
|
||||
@@ -336,8 +336,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"oai.ChatCompletion.request_timeout = 120\n",
|
||||
"config_n10 = {\"model\": 'gpt-4', \"prompt\": prompts[0], \"max_tokens\": 600, \"n\": 10}\n",
|
||||
"n10_result = oai.ChatCompletion.test(test_data[:50], config_n10, eval_math_responses, logging_level=logging.INFO)\n",
|
||||
"config_n10 = {\"model\": 'gpt-4', \"prompt\": prompt, \"max_tokens\": 600, \"n\": 10}\n",
|
||||
"n10_result = oai.ChatCompletion.test(test_data[:50], eval_math_responses, logging_level=logging.INFO, **config_n10)\n",
|
||||
"print(n10_result)"
|
||||
]
|
||||
},
|
||||
@@ -347,8 +347,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"config_n30 = {\"model\": 'gpt-4', \"prompt\": prompts[0], \"max_tokens\": 600, \"n\": 30}\n",
|
||||
"n30_result = oai.ChatCompletion.test(test_data[:50], config_n30, eval_math_responses, logging_level=logging.INFO)\n",
|
||||
"config_n30 = {\"model\": 'gpt-4', \"prompt\": prompt, \"max_tokens\": 600, \"n\": 30}\n",
|
||||
"n30_result = oai.ChatCompletion.test(test_data[:50], eval_math_responses, logging_level=logging.INFO, **config_n30)\n",
|
||||
"print(n30_result)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -4,6 +4,7 @@ import numpy as np
|
||||
import pytest
|
||||
from functools import partial
|
||||
import os
|
||||
import json
|
||||
from flaml import oai
|
||||
from flaml.autogen.code_utils import (
|
||||
eval_function_completions,
|
||||
@@ -17,6 +18,75 @@ from flaml.autogen.code_utils import (
|
||||
)
|
||||
from flaml.autogen.math_utils import eval_math_responses, solve_problem
|
||||
|
||||
KEY_LOC = "test/autogen"
|
||||
here = os.path.abspath(os.path.dirname(__file__))
|
||||
|
||||
|
||||
def yes_or_no_filter(context, response, **_):
|
||||
return context.get("yes_or_no_choice", False) is False or any(
|
||||
text in ["Yes.", "No."] for text in oai.Completion.extract_text(response)
|
||||
)
|
||||
|
||||
|
||||
def valid_json_filter(response, **_):
|
||||
for text in oai.Completion.extract_text(response):
|
||||
try:
|
||||
json.loads(text)
|
||||
return True
|
||||
except ValueError:
|
||||
pass
|
||||
return False
|
||||
|
||||
|
||||
def test_filter():
|
||||
try:
|
||||
import openai
|
||||
except ImportError as exc:
|
||||
print(exc)
|
||||
return
|
||||
response = oai.Completion.create(
|
||||
context={"yes_or_no_choice": True},
|
||||
config_list=[{"model": "text-ada-001"}, {"model": "gpt-3.5-turbo"}, {"model": "text-davinci-003"}],
|
||||
prompt="Is 37 a prime number? Please answer 'Yes.' or 'No.'",
|
||||
filter_func=yes_or_no_filter,
|
||||
)
|
||||
assert oai.Completion.extract_text(response)[0] in ["Yes.", "No."]
|
||||
response = oai.Completion.create(
|
||||
context={"yes_or_no_choice": False},
|
||||
config_list=[{"model": "text-ada-001"}, {"model": "gpt-3.5-turbo"}, {"model": "text-davinci-003"}],
|
||||
prompt="Is 37 a prime number?",
|
||||
filter_func=yes_or_no_filter,
|
||||
)
|
||||
assert response["model"] == "text-ada-001"
|
||||
response = oai.Completion.create(
|
||||
config_list=[{"model": "text-ada-001"}, {"model": "gpt-3.5-turbo"}, {"model": "text-davinci-003"}],
|
||||
prompt="How to construct a json request to Bing API to search for 'latest AI news'? Return the JSON request.",
|
||||
filter_func=valid_json_filter,
|
||||
)
|
||||
assert response["config_id"] == 2 or response["pass_filter"], "the response must pass filter unless all fail"
|
||||
assert not response["pass_filter"] or json.loads(oai.Completion.extract_text(response)[0])
|
||||
|
||||
|
||||
def test_chatcompletion():
|
||||
params = oai.ChatCompletion._construct_params(
|
||||
data_instance=None,
|
||||
config={"model": "unknown"},
|
||||
prompt="hi",
|
||||
)
|
||||
assert "messages" in params
|
||||
params = oai.Completion._construct_params(
|
||||
data_instance=None,
|
||||
config={"model": "unknown"},
|
||||
prompt="hi",
|
||||
)
|
||||
assert "messages" not in params
|
||||
params = oai.Completion._construct_params(
|
||||
data_instance=None,
|
||||
config={"model": "gpt-4"},
|
||||
prompt="hi",
|
||||
)
|
||||
assert "messages" in params
|
||||
|
||||
|
||||
def test_multi_model():
|
||||
try:
|
||||
@@ -25,36 +95,7 @@ def test_multi_model():
|
||||
print(exc)
|
||||
return
|
||||
response = oai.Completion.create(
|
||||
config_list=[
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"api_key": os.environ.get("OPENAI_API_KEY"),
|
||||
"api_type": "open_ai",
|
||||
"api_base": "https://api.openai.com/v1",
|
||||
"api_version": None,
|
||||
},
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"api_key": os.environ.get("AZURE_OPENAI_API_KEY"),
|
||||
"api_type": "azure",
|
||||
"api_base": os.environ.get("AZURE_OPENAI_API_BASE"),
|
||||
"api_version": "2023-03-15-preview",
|
||||
},
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"api_key": os.environ.get("OPENAI_API_KEY"),
|
||||
"api_type": "open_ai",
|
||||
"api_base": "https://api.openai.com/v1",
|
||||
"api_version": None,
|
||||
},
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"api_key": os.environ.get("AZURE_OPENAI_API_KEY"),
|
||||
"api_type": "azure",
|
||||
"api_base": os.environ.get("AZURE_OPENAI_API_BASE"),
|
||||
"api_version": "2023-03-15-preview",
|
||||
},
|
||||
],
|
||||
config_list=oai.config_list_gpt4_gpt35(KEY_LOC),
|
||||
prompt="Hi",
|
||||
)
|
||||
print(response)
|
||||
@@ -75,7 +116,7 @@ def test_execute_code():
|
||||
# read a file
|
||||
print(execute_code("with open('tmp/codetest.py', 'r') as f: a=f.read()"))
|
||||
# create a file
|
||||
print(execute_code("with open('tmp/codetest.py', 'w') as f: f.write('b=1')", work_dir="test/openai/my_tmp"))
|
||||
print(execute_code("with open('tmp/codetest.py', 'w') as f: f.write('b=1')", work_dir=f"{here}/my_tmp"))
|
||||
# execute code in a file
|
||||
print(execute_code(filename="tmp/codetest.py"))
|
||||
# execute code for assertion error
|
||||
@@ -95,25 +136,29 @@ def test_improve():
|
||||
except ImportError as exc:
|
||||
print(exc)
|
||||
return
|
||||
config_list = oai.config_list_openai_aoai(KEY_LOC)
|
||||
improved, _ = improve_function(
|
||||
"flaml/autogen/math_utils.py",
|
||||
"solve_problem",
|
||||
"Solve math problems accurately, by avoiding calculation errors and reduce reasoning errors.",
|
||||
config_list=config_list,
|
||||
)
|
||||
with open("test/openai/math_utils.py.improved", "w") as f:
|
||||
with open(f"{here}/math_utils.py.improved", "w") as f:
|
||||
f.write(improved)
|
||||
suggestion, _ = improve_code(
|
||||
["flaml/autogen/code_utils.py", "flaml/autogen/math_utils.py"],
|
||||
"leverage generative AI smartly and cost-effectively",
|
||||
config_list=config_list,
|
||||
)
|
||||
print(suggestion)
|
||||
improvement, cost = improve_code(
|
||||
["flaml/autogen/code_utils.py", "flaml/autogen/math_utils.py"],
|
||||
"leverage generative AI smartly and cost-effectively",
|
||||
suggest_only=False,
|
||||
config_list=config_list,
|
||||
)
|
||||
print(cost)
|
||||
with open("test/openai/suggested_improvement.txt", "w") as f:
|
||||
with open(f"{here}/suggested_improvement.txt", "w") as f:
|
||||
f.write(improvement)
|
||||
|
||||
|
||||
@@ -175,7 +220,7 @@ print(f"Text: {text}")
|
||||
"""
|
||||
)
|
||||
print(code)
|
||||
solution, cost = solve_problem("1+1=")
|
||||
solution, cost = solve_problem("1+1=", config_list=oai.config_list_gpt4_gpt35(KEY_LOC))
|
||||
print(solution, cost)
|
||||
|
||||
|
||||
@@ -205,6 +250,7 @@ def test_humaneval(num_samples=1):
|
||||
}
|
||||
for x in range(n_tune_data, len(data))
|
||||
]
|
||||
oai.Completion.clear_cache(cache_path_root="{here}/cache")
|
||||
oai.Completion.set_cache(seed)
|
||||
try:
|
||||
import openai
|
||||
@@ -212,6 +258,7 @@ def test_humaneval(num_samples=1):
|
||||
except ImportError as exc:
|
||||
print(exc)
|
||||
return
|
||||
oai.Completion.clear_cache(400)
|
||||
# a minimal tuning example
|
||||
config, _ = oai.Completion.tune(
|
||||
data=tune_data,
|
||||
@@ -233,7 +280,8 @@ def test_humaneval(num_samples=1):
|
||||
prompt="{definition}",
|
||||
)
|
||||
responses = oai.Completion.create(context=test_data[0], **config)
|
||||
# a minimal tuning example for tuning chat completion models using the Completion class
|
||||
# a minimal tuning example for tuning chat completion models using the ChatCompletion class
|
||||
config_list = oai.config_list_openai_aoai(KEY_LOC)
|
||||
config, _ = oai.ChatCompletion.tune(
|
||||
data=tune_data,
|
||||
metric="expected_success",
|
||||
@@ -241,12 +289,14 @@ def test_humaneval(num_samples=1):
|
||||
eval_func=eval_function_completions,
|
||||
n=1,
|
||||
messages=[{"role": "user", "content": "{definition}"}],
|
||||
config_list=config_list,
|
||||
)
|
||||
responses = oai.ChatCompletion.create(context=test_data[0], **config)
|
||||
responses = oai.ChatCompletion.create(context=test_data[0], config_list=config_list, **config)
|
||||
print(responses)
|
||||
code, cost, _ = implement(tune_data[1], [config])
|
||||
code, cost, selected = implement(tune_data[1], [{**config_list[-1], **config}])
|
||||
print(code)
|
||||
print(cost)
|
||||
assert selected == 0
|
||||
print(eval_function_completions([code], **tune_data[1]))
|
||||
# a more comprehensive tuning example
|
||||
config2, analysis = oai.Completion.tune(
|
||||
@@ -274,9 +324,11 @@ def test_humaneval(num_samples=1):
|
||||
oai.Completion.data = test_data[:num_samples]
|
||||
result = oai.Completion._eval(analysis.best_config, prune=False, eval_only=True)
|
||||
print("result without pruning", result)
|
||||
result = oai.Completion.test(test_data[:num_samples], config=config2)
|
||||
result = oai.Completion.test(test_data[:num_samples], **config2)
|
||||
print(result)
|
||||
code, cost, selected = implement(tune_data[1], [config2, config])
|
||||
print(code)
|
||||
print(cost)
|
||||
print(selected)
|
||||
print(eval_function_completions([code], **tune_data[1]))
|
||||
|
||||
@@ -331,12 +383,12 @@ def test_math(num_samples=-1):
|
||||
"stop": "###",
|
||||
}
|
||||
test_data_sample = test_data[0:3]
|
||||
result = oai.ChatCompletion.test(test_data_sample, vanilla_config, eval_math_responses)
|
||||
result = oai.ChatCompletion.test(test_data_sample, eval_math_responses, **vanilla_config)
|
||||
result = oai.ChatCompletion.test(
|
||||
test_data_sample,
|
||||
vanilla_config,
|
||||
eval_math_responses,
|
||||
agg_method="median",
|
||||
**vanilla_config,
|
||||
)
|
||||
|
||||
def my_median(results):
|
||||
@@ -347,13 +399,12 @@ def test_math(num_samples=-1):
|
||||
|
||||
result = oai.ChatCompletion.test(
|
||||
test_data_sample,
|
||||
vanilla_config,
|
||||
eval_math_responses,
|
||||
agg_method=my_median,
|
||||
**vanilla_config,
|
||||
)
|
||||
result = oai.ChatCompletion.test(
|
||||
test_data_sample,
|
||||
vanilla_config,
|
||||
eval_math_responses,
|
||||
agg_method={
|
||||
"expected_success": my_median,
|
||||
@@ -361,6 +412,7 @@ def test_math(num_samples=-1):
|
||||
"success_vote": my_average,
|
||||
"votes": np.mean,
|
||||
},
|
||||
**vanilla_config,
|
||||
)
|
||||
|
||||
print(result)
|
||||
@@ -378,7 +430,7 @@ def test_math(num_samples=-1):
|
||||
stop="###", # the stop sequence
|
||||
)
|
||||
print("tuned config", config)
|
||||
result = oai.ChatCompletion.test(test_data_sample, config)
|
||||
result = oai.ChatCompletion.test(test_data_sample, config_list=oai.config_list_openai_aoai(KEY_LOC), **config)
|
||||
print("result from tuned config:", result)
|
||||
print("empty responses", eval_math_responses([], None))
|
||||
|
||||
@@ -386,12 +438,15 @@ def test_math(num_samples=-1):
|
||||
if __name__ == "__main__":
|
||||
import openai
|
||||
|
||||
openai.api_key = os.environ["OPENAI_API_KEY"] = open("test/openai/key.txt").read().strip()
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = open("test/openai/key_azure.txt").read().strip()
|
||||
os.environ["AZURE_OPENAI_API_BASE"] = open("test/openai/base_azure.txt").read().strip()
|
||||
config_list = oai.config_list_openai_aoai(KEY_LOC)
|
||||
assert len(config_list) >= 3, config_list
|
||||
openai.api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
# test_filter()
|
||||
# test_chatcompletion()
|
||||
# test_multi_model()
|
||||
# test_execute_code()
|
||||
test_improve()
|
||||
# test_improve()
|
||||
# test_nocontext()
|
||||
# test_humaneval(1)
|
||||
test_humaneval(1)
|
||||
# test_math(1)
|
||||
64
test/autogen/oai/test_notebook.py
Normal file
64
test/autogen/oai/test_notebook.py
Normal file
@@ -0,0 +1,64 @@
|
||||
import sys
|
||||
import os
|
||||
import pytest
|
||||
|
||||
try:
|
||||
import openai
|
||||
|
||||
skip = False
|
||||
except ImportError:
|
||||
skip = True
|
||||
|
||||
|
||||
here = os.path.abspath(os.path.dirname(__file__))
|
||||
|
||||
|
||||
def run_notebook(input_nb, output_nb="executed_openai_notebook.ipynb", save=False):
|
||||
import nbformat
|
||||
from nbconvert.preprocessors import ExecutePreprocessor
|
||||
from nbconvert.preprocessors import CellExecutionError
|
||||
|
||||
try:
|
||||
file_path = os.path.join(here, os.pardir, os.pardir, os.pardir, "notebook", input_nb)
|
||||
with open(file_path) as nb_file:
|
||||
nb = nbformat.read(nb_file, as_version=4)
|
||||
preprocessor = ExecutePreprocessor(timeout=4800, kernel_name="python3")
|
||||
preprocessor.preprocess(nb, {"metadata": {"path": here}})
|
||||
|
||||
output_file_name = "executed_openai_notebook_output.txt"
|
||||
output_file = os.path.join(here, output_file_name)
|
||||
with open(output_file, "a") as nb_output_file:
|
||||
for cell in nb.cells:
|
||||
if cell.cell_type == "code" and "outputs" in cell:
|
||||
for output in cell.outputs:
|
||||
if "text" in output:
|
||||
nb_output_file.write(output["text"].strip() + "\n")
|
||||
elif "data" in output and "text/plain" in output["data"]:
|
||||
nb_output_file.write(output["data"]["text/plain"].strip() + "\n")
|
||||
except CellExecutionError:
|
||||
raise
|
||||
finally:
|
||||
if save:
|
||||
with open(os.path.join(here, output_nb), "w", encoding="utf-8") as nb_executed_file:
|
||||
nbformat.write(nb, nb_executed_file)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
skip or not sys.version.startswith("3.10"),
|
||||
reason="do not run openai test if openai is not installed or py!=3.10",
|
||||
)
|
||||
def test_autogen_openai_completion(save=False):
|
||||
run_notebook("autogen_openai_completion.ipynb", save=save)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
skip or not sys.version.startswith("3.11"),
|
||||
reason="do not run openai test if openai is not installed or py!=3.11",
|
||||
)
|
||||
def test_autogen_chatgpt_gpt4(save=False):
|
||||
run_notebook("autogen_chatgpt_gpt4.ipynb", save=save)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_autogen_chatgpt_gpt4(save=True)
|
||||
test_autogen_openai_completion(save=True)
|
||||
@@ -1,23 +1,38 @@
|
||||
import os
|
||||
from flaml.autogen.code_utils import extract_code
|
||||
from flaml import oai
|
||||
|
||||
KEY_LOC = "test/autogen"
|
||||
here = os.path.abspath(os.path.dirname(__file__))
|
||||
|
||||
|
||||
def test_extract_code():
|
||||
print(extract_code("```bash\npython temp.py\n```"))
|
||||
|
||||
|
||||
def test_coding_agent():
|
||||
def test_coding_agent(human_input_mode="NEVER", max_consecutive_auto_reply=10):
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
return
|
||||
from flaml.autogen.agent.coding_agent import PythonAgent
|
||||
from flaml.autogen.agent.agent import Agent
|
||||
from flaml.autogen.agent.user_proxy_agent import UserProxyAgent
|
||||
|
||||
config_list = oai.config_list_gpt4_gpt35(key_file_path=KEY_LOC)
|
||||
conversations = {}
|
||||
oai.ChatCompletion.start_logging(conversations)
|
||||
agent = PythonAgent("coding_agent")
|
||||
user = Agent("user")
|
||||
agent = PythonAgent("coding_agent", request_timeout=600, seed=42, config_list=config_list)
|
||||
user = UserProxyAgent(
|
||||
"user",
|
||||
human_input_mode=human_input_mode,
|
||||
max_consecutive_auto_reply=max_consecutive_auto_reply,
|
||||
is_termination_msg=lambda x: x.rstrip().endswith("TERMINATE"),
|
||||
)
|
||||
agent.receive(
|
||||
"""Create and execute a script to plot a rocket without using matplotlib""",
|
||||
user,
|
||||
)
|
||||
agent.reset()
|
||||
agent.receive(
|
||||
"""Create a temp.py file with the following content:
|
||||
```
|
||||
@@ -32,14 +47,15 @@ print('Hello world!')
|
||||
oai.ChatCompletion.stop_logging()
|
||||
|
||||
|
||||
def test_tsp():
|
||||
def test_tsp(human_input_mode="NEVER", max_consecutive_auto_reply=10):
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
return
|
||||
from flaml.autogen.agent.coding_agent import PythonAgent
|
||||
from flaml.autogen.agent.agent import Agent
|
||||
from flaml.autogen.agent.user_proxy_agent import UserProxyAgent
|
||||
|
||||
config_list = oai.config_list_openai_aoai(key_file_path=KEY_LOC)
|
||||
hard_questions = [
|
||||
"What if we must go from node 1 to node 2?",
|
||||
"Can we double all distances?",
|
||||
@@ -47,9 +63,14 @@ def test_tsp():
|
||||
]
|
||||
|
||||
oai.ChatCompletion.start_logging()
|
||||
agent = PythonAgent("coding_agent", work_dir="test/autogen", temperature=0)
|
||||
user = Agent("user")
|
||||
with open("test/autogen/tsp_prompt.txt", "r") as f:
|
||||
agent = PythonAgent("coding_agent", temperature=0, config_list=config_list)
|
||||
user = UserProxyAgent(
|
||||
"user",
|
||||
work_dir=f"{here}",
|
||||
human_input_mode=human_input_mode,
|
||||
max_consecutive_auto_reply=max_consecutive_auto_reply,
|
||||
)
|
||||
with open(f"{here}/tsp_prompt.txt", "r") as f:
|
||||
prompt = f.read()
|
||||
# agent.receive(prompt.format(question=hard_questions[0]), user)
|
||||
# agent.receive(prompt.format(question=hard_questions[1]), user)
|
||||
@@ -59,14 +80,9 @@ def test_tsp():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import openai
|
||||
|
||||
openai.api_key_path = "test/openai/key.txt"
|
||||
# if you use Azure OpenAI, comment the above line and uncomment the following lines
|
||||
# openai.api_type = "azure"
|
||||
# openai.api_base = "https://<your_endpoint>.openai.azure.com/"
|
||||
# openai.api_version = "2023-03-15-preview" # change if necessary
|
||||
# openai.api_key = "<your_api_key>"
|
||||
# test_extract_code()
|
||||
test_coding_agent()
|
||||
test_tsp()
|
||||
test_coding_agent(human_input_mode="TERMINATE")
|
||||
# when GPT-4, i.e., the DEFAULT_MODEL, is used, conversation in the following test
|
||||
# should terminate in 2-3 rounds of interactions (because is_termination_msg should be true after 2-3 rounds)
|
||||
# although the max_consecutive_auto_reply is set to 10.
|
||||
test_tsp(human_input_mode="NEVER", max_consecutive_auto_reply=10)
|
||||
|
||||
32
test/autogen/test_user_proxy_agent.py
Normal file
32
test/autogen/test_user_proxy_agent.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from flaml import oai
|
||||
|
||||
KEY_LOC = "test/autogen"
|
||||
|
||||
|
||||
def test_human_agent():
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
return
|
||||
from flaml.autogen.agent.chat_agent import ChatAgent
|
||||
from flaml.autogen.agent.user_proxy_agent import UserProxyAgent
|
||||
|
||||
conversations = {}
|
||||
oai.ChatCompletion.start_logging(conversations)
|
||||
agent = ChatAgent("chat_agent", config_list=oai.config_list_gpt4_gpt35(key_file_path=KEY_LOC))
|
||||
user = UserProxyAgent("human_user", human_input_mode="NEVER", max_consecutive_auto_reply=2)
|
||||
agent.receive(
|
||||
"""Write python code to solve the equation x^3=125. You must write code in the following format. You must always print the result.
|
||||
Wait for me to return the result.
|
||||
```python
|
||||
# your code
|
||||
print(your_result)
|
||||
```
|
||||
""",
|
||||
user,
|
||||
)
|
||||
print(conversations)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_human_agent()
|
||||
@@ -22,7 +22,7 @@ def test_summarization():
|
||||
automl_settings["task"] = "summarization"
|
||||
automl_settings["metric"] = "rouge1"
|
||||
automl_settings["time_budget"] = 2 * automl_settings["time_budget"]
|
||||
automl_settings["fit_kwargs_by_estimator"]["transformer"]["model_path"] = "patrickvonplaten/t5-tiny-random"
|
||||
automl_settings["fit_kwargs_by_estimator"]["transformer"]["model_path"] = "google/flan-t5-small"
|
||||
|
||||
try:
|
||||
automl.fit(X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings)
|
||||
|
||||
@@ -1,62 +0,0 @@
|
||||
import nbformat
|
||||
from nbconvert.preprocessors import ExecutePreprocessor
|
||||
from nbconvert.preprocessors import CellExecutionError
|
||||
import os
|
||||
import pytest
|
||||
|
||||
try:
|
||||
import openai
|
||||
|
||||
skip = False
|
||||
except ImportError:
|
||||
skip = True
|
||||
|
||||
|
||||
here = os.path.abspath(os.path.dirname(__file__))
|
||||
|
||||
|
||||
def run_notebook(input_nb, output_nb="executed_openai_notebook.ipynb", save=False):
|
||||
try:
|
||||
file_path = os.path.join(here, os.pardir, os.pardir, "notebook", input_nb)
|
||||
with open(file_path) as f:
|
||||
nb = nbformat.read(f, as_version=4)
|
||||
ep = ExecutePreprocessor(timeout=3600, kernel_name="python3")
|
||||
ep.preprocess(nb, {"metadata": {"path": here}})
|
||||
|
||||
output_file_name = "executed_openai_notebook_output.txt"
|
||||
output_file = os.path.join(here, output_file_name)
|
||||
with open(output_file, "a") as f:
|
||||
for cell in nb.cells:
|
||||
if cell.cell_type == "code" and "outputs" in cell:
|
||||
for output in cell.outputs:
|
||||
if "text" in output:
|
||||
f.write(output["text"].strip() + "\n")
|
||||
elif "data" in output and "text/plain" in output["data"]:
|
||||
f.write(output["data"]["text/plain"].strip() + "\n")
|
||||
except CellExecutionError:
|
||||
raise
|
||||
finally:
|
||||
if save:
|
||||
with open(os.path.join(here, output_nb), "w", encoding="utf-8") as f:
|
||||
nbformat.write(nb, f)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
skip,
|
||||
reason="do not run openai test if openai is not installed",
|
||||
)
|
||||
def test_autogen_openai(save=False):
|
||||
run_notebook("autogen_openai.ipynb", save=save)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
skip,
|
||||
reason="do not run openai test if openai is not installed",
|
||||
)
|
||||
def test_autogen_chatgpt(save=False):
|
||||
run_notebook("autogen_chatgpt.ipynb", save=save)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_autogen_chatgpt(save=True)
|
||||
test_autogen_openai(save=True)
|
||||
@@ -219,6 +219,7 @@ def test_n_current_trials():
|
||||
assert get_n_current_trials(2) == min(2, tmp_max)
|
||||
assert get_n_current_trials(50) == min(50, tmp_max)
|
||||
assert get_n_current_trials(200) == min(200, tmp_max)
|
||||
del os.environ["FLAML_MAX_CONCURRENT"]
|
||||
|
||||
|
||||
def test_iloc_pandas_on_spark():
|
||||
|
||||
@@ -69,6 +69,6 @@ The need for model selection, parameter tuning and cost saving is not specific t
|
||||
## For Further Reading
|
||||
|
||||
* [Research paper about the tuning technique](https://arxiv.org/abs/2303.04673)
|
||||
* [Documentation about `flaml.autogen`](docs/Use-Cases/Auto-Generation)
|
||||
* [Documentation about `flaml.autogen`](/docs/Use-Cases/Auto-Generation)
|
||||
|
||||
*Do you have any experience to share about LLM applications? Do you like to see more support or research of LLM optimization or automation? Please join our [Discord](https://discord.gg/Cppx2vSPVP) server for discussion.*
|
||||
|
||||
43
website/blog/2023-05-07-1M-milestone/index.mdx
Normal file
43
website/blog/2023-05-07-1M-milestone/index.mdx
Normal file
@@ -0,0 +1,43 @@
|
||||
---
|
||||
title: Surpassing 1 Million Downloads - A Retrospective and a Look into the Future
|
||||
authors: qingyunwu
|
||||
tags: [LLM, LLMOps, FLAMLv2]
|
||||
---
|
||||
|
||||
**TL;DR:**
|
||||
* **Celebrating FLAML's milestone: 1 million downloads**
|
||||
* **Introducing Large Language Model (LLM) support in the upcoming FLAML v2**
|
||||
|
||||
|
||||
This week, FLAML has reached a significant milestone: 1 million downloads. Originating as an intern research project within Microsoft Research, FLAML has grown into an open-source library used widely across the industry and supported by an active community.
|
||||
As we celebrate this milestone, we want to recognize the passionate contributors and users who have played an essential role in molding FLAML into the flourishing project it is today. Our heartfelt gratitude goes out to each of you for your unwavering support, constructive feedback, and innovative contributions that have driven FLAML to new heights.
|
||||
A big shoutout to our industrial collaborators from Azure Core, Azure Machine Learning, Azure Synapse Analytics, Microsoft 365, ML.NET, Vowpal Wabbit, Anyscale, Databricks, and Wise; and academic collaborators from MIT, Penn State University, Stevens Institute of Technology, Tel Aviv University, Texas A & M University, University of Manchester, University of Washington, and The Chinese University of Hong Kong etc.
|
||||
|
||||
We'd also like to take the opportunity to reflect on FLAML's past achievements and its future roadmap, with a particular focus on large language models (LLM) and LLMOps.
|
||||
|
||||
## FLAML's Journey: Past Achievements and Milestones
|
||||
|
||||
### Bring AutoML to One's Fingertips
|
||||
FLAML offers an off-the-shelf AutoML solution that enables users to quickly discover high-quality models or configurations for common ML/AI tasks. By automatically selecting models and hyperparameters for training or inference, FLAML saves users time and effort. FLAML has significantly reduced development time for developers and data scientists alike, while also providing a convenient way to integrate new algorithms into the pipeline, enabling easy extensions and large-scale parallel tuning. These features make FLAML a valuable tool in R&D efforts for many enterprise users.
|
||||
FLAML is capable of handling a variety of common ML tasks, such as [classification](https://microsoft.github.io/FLAML/docs/Examples/AutoML-Classification), [regression](https://microsoft.github.io/FLAML/docs/Examples/AutoML-Regression), [time series forecasting](https://microsoft.github.io/FLAML/docs/Examples/AutoML-Time%20series%20forecast), [NLP tasks](https://microsoft.github.io/FLAML/docs/Examples/AutoML-Rank), and [generative tasks](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation), providing a comprehensive solution for various applications.
|
||||
|
||||
### Speed and Efficiency: The FLAML Advantage
|
||||
What sets FLAML apart from other AutoML libraries is its exceptional efficiency, thanks to the economical and efficient hyperparameter optimization and model selection methods developed in our [research](https://microsoft.github.io/FLAML/docs/Research). FLAML is also capable of handling large search spaces with heterogeneous evaluation costs, complex constraints, guidance, and early stopping. The [zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) option further reduces the cost of AutoML, making FLAML an even more attractive solution for a wide range of applications with low resources.
|
||||
|
||||
### Easy Customization and Extensibility
|
||||
FLAML is designed for easy extensibility and customization, allowing users to add custom learners, metrics, search space, etc. For example, the support of hierarchical search spaces allows one to first choose an ML learner and then sampling from the hyperparameter space specific to that learner. The level of customization ranges from minimal (providing only training data and task type as input) to full (tuning a user-defined function). This flexibility and support for easy customization have led to FLAML's adoption in various domains, including security, finance, marketing, engineering, supply chain, insurance, and healthcare, delivering highly accurate results.
|
||||
|
||||
## Embracing Large Language Models in FLAML v2
|
||||
As large language models continue to reshape the AI ecosystem, FLAML is poised to adapt and grow alongside these advancements. Recognizing the importance of large language models, we have recently incorporated an autogen package into FLAML, and are committed to focusing our collective efforts on addressing the unique challenges that arise in LLMOps (Large Language Model Operations).
|
||||
|
||||
In its current iteration, FLAML offers support for model selection and inference parameter tuning for large language models. We are actively working on the development of new features, such as LLM selection, inference hyperparameter tuning for LLM, and agent-based LLM operations, to further expand FLAML's capabilities.
|
||||
|
||||
We are eagerly preparing for the launch of FLAML v2, where we will place special emphasis on incorporating and enhancing features specifically tailored for large language models (LLMs), further expanding FLAML's capabilities.
|
||||
We invite contributions from anyone interested in this topic and look forward to collaborating with the community as we shape the future of FLAML and LLMOps together.
|
||||
|
||||
## For Further Reading
|
||||
|
||||
* [Documentation about `flaml.autogen`](/docs/Use-Cases/Auto-Generation)
|
||||
* [Code Example: Tune chatGPT for Math Problem Solving with FLAML](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_chatgpt_gpt4.ipynb)
|
||||
|
||||
*Do you have any experience to share about LLM applications? Do you like to see more support or research of LLMOps? Please join our [Discord](https://discord.gg/Cppx2vSPVP) server for discussion.*
|
||||
@@ -3,3 +3,9 @@ sonichi:
|
||||
title: Principal Researcher at Microsoft Research
|
||||
url: https://www.linkedin.com/in/chi-wang-49b15b16/
|
||||
image_url: https://github.com/sonichi.png
|
||||
|
||||
qingyunwu:
|
||||
name: Qingyun Wu
|
||||
title: Assistant Professor at the Pennsylvania State University
|
||||
url: https://qingyun-wu.github.io/
|
||||
image_url: https://github.com/qingyun-wu.png
|
||||
|
||||
@@ -128,10 +128,10 @@ print(eval_with_generated_assertions(oai.Completion.extract_text(response), **tu
|
||||
You can use flaml's `oai.Completion.test` to evaluate the performance of an entire dataset with the tuned config.
|
||||
|
||||
```python
|
||||
result = oai.Completion.test(test_data, config)
|
||||
result = oai.Completion.test(test_data, **config)
|
||||
print("performance on test data with the tuned config:", result)
|
||||
```
|
||||
|
||||
The result will vary with the inference budget and optimization budget.
|
||||
|
||||
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_openai.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/autogen_openai.ipynb)
|
||||
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_openai_completion.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/autogen_openai_completion.ipynb)
|
||||
|
||||
@@ -26,6 +26,9 @@ There are also complex interactions among subsets of the hyperparameters. For ex
|
||||
the temperature and top_p are not recommended to be altered from their default values together because they both control the randomness of the generated text, and changing both at the same time can result in conflicting effects; n and best_of are rarely tuned together because if the application can process multiple outputs, filtering on the server side causes unnecessary information loss; both n and max_tokens will affect the total number of tokens generated, which in turn will affect the cost of the request.
|
||||
These interactions and trade-offs make it difficult to manually determine the optimal hyperparameter settings for a given text generation task.
|
||||
|
||||
*Do the choices matter? Check this [blog post](/blog/2023/04/21/LLM-tuning-math) for a case study.*
|
||||
|
||||
|
||||
## Tune Hyperparameters
|
||||
|
||||
The tuning can be performed with the following information:
|
||||
@@ -46,8 +49,9 @@ The evaluation function should take a list of responses, and other keyword argum
|
||||
```python
|
||||
def eval_math_responses(responses: List[str], solution: str, **args) -> Dict:
|
||||
# select a response from the list of responses
|
||||
answer = voted_answer(responses)
|
||||
# check whether the answer is correct
|
||||
return {"success": True or False}
|
||||
return {"success": is_equivalent(answer, solution)}
|
||||
```
|
||||
|
||||
[`flaml.autogen.code_utils`](../reference/autogen/code_utils) and [`flaml.autogen.math_utils`](../reference/autogen/math_utils) offer some example evaluation functions for code generation and math problem solving.
|
||||
@@ -100,6 +104,8 @@ The returned `config` contains the optimized configuration and `analysis` contai
|
||||
|
||||
The tuend config can be used to perform inference.
|
||||
|
||||
*Refer to this [page](../Examples/AutoGen-OpenAI) for a full example.*
|
||||
|
||||
## Perform Inference
|
||||
|
||||
One can use [`flaml.oai.Completion.create`](../reference/autogen/oai/completion#create) to perform inference.
|
||||
@@ -107,16 +113,21 @@ There are a number of benefits of using `flaml.oai.Completion.create` to perform
|
||||
|
||||
### API unification
|
||||
|
||||
`flaml.oai.Completion.create` is compatible with both `openai.Completion.create` and `openai.ChatCompletion.create`, and both OpenAI API and Azure OpenAI API. So models such as "text-davinci-003", "gpt-3.5-turbo" and "gpt-4" can share a common API. When only tuning the chat-based models, `flaml.oai.ChatCompletion` can be used.
|
||||
`flaml.oai.Completion.create` is compatible with both `openai.Completion.create` and `openai.ChatCompletion.create`, and both OpenAI API and Azure OpenAI API. So models such as "text-davinci-003", "gpt-3.5-turbo" and "gpt-4" can share a common API.
|
||||
When chat models are used and `prompt` is given as the input to `flaml.oai.Completion.create`, the prompt will be automatically converted into `messages` to fit the chat completion API requirement. One advantage is that one can experiment with both chat and non-chat models for the same prompt in a unified API.
|
||||
|
||||
For local LLMs, one can spin up an endpoint using a package like [simple_ai_server](https://github.com/lhenault/simpleAI), and then use the same API to send a request.
|
||||
|
||||
When only working with the chat-based models, `flaml.oai.ChatCompletion` can be used. It also does automatic conversion from prompt to messages, if prompt is provided instead of messages.
|
||||
|
||||
### Caching
|
||||
|
||||
API call results are cached locally and reused when the same request is issued. This is useful when repeating or continuing experiments for reproducibility and cost saving. It still allows controlled randomness by setting the "seed", using [`set_cache`](../reference/autogen/oai/completion#set_cache) or specifying in `create()`.
|
||||
|
||||
### Error handling
|
||||
|
||||
#### Runtime error
|
||||
|
||||
It is easy to hit error when calling OpenAI APIs, due to connection, rate limit, or timeout. Some of the errors are transient. `flaml.oai.Completion.create` deals with the transient errors and retries automatically. Initial request timeout, retry timeout and retry time interval can be configured via `flaml.oai.request_timeout`, `flaml.oai.retry_timeout` and `flaml.oai.retry_time`.
|
||||
|
||||
Moreover, one can pass a list of configurations of different models/endpoints to mitigate the rate limits. For example,
|
||||
@@ -149,7 +160,31 @@ response = oai.Completion.create(
|
||||
)
|
||||
```
|
||||
|
||||
It will try querying Azure OpenAI gpt-4, OpenAI gpt-3.5-turbo, and llama-7B one by one, until a valid result is returned. This can speed up the development process where the rate limit is a bottleneck.
|
||||
It will try querying Azure OpenAI gpt-4, OpenAI gpt-3.5-turbo, and a locally hosted llama-7B one by one, ignoring AuthenticationError, RateLimitError and Timeout,
|
||||
until a valid result is returned. This can speed up the development process where the rate limit is a bottleneck. An error will be raised if the last choice fails. So make sure the last choice in the list has the best availability.
|
||||
|
||||
#### Logic error
|
||||
|
||||
Another type of error is that the returned response does not satisfy a requirement. For example, if the response is required to be a valid json string, one would like to filter the responses that are not. This can be achieved by providing a list of configurations and a filter function. For example,
|
||||
|
||||
```python
|
||||
def valid_json_filter(context, config, response):
|
||||
for text in oai.Completion.extract_text(response):
|
||||
try:
|
||||
json.loads(text)
|
||||
return True
|
||||
except ValueError:
|
||||
pass
|
||||
return False
|
||||
|
||||
response = oai.Completion.create(
|
||||
config_list=[{"model": "text-ada-001"}, {"model": "gpt-3.5-turbo"}, {"model": "text-davinci-003"}],
|
||||
prompt="How to construct a json request to Bing API to search for 'latest AI news'? Return the JSON request.",
|
||||
filter_func=valid_json_filter,
|
||||
)
|
||||
```
|
||||
|
||||
The example above will try to use text-ada-001, gpt-3.5-turbo, and text-davinci-003 iteratively, until a valid json string is returned or the last config is used. One can also repeat the same model in the list for multiple times to try one model multiple times for increasing the robustness of the final response.
|
||||
|
||||
### Templating
|
||||
|
||||
@@ -355,5 +390,5 @@ The compact history is more efficient and the individual API call history contai
|
||||
|
||||
|
||||
*Interested in trying it yourself? Please check the following notebook examples:*
|
||||
* [Optimize for Code Gen](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_openai.ipynb)
|
||||
* [Optimize for Math](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_chatgpt.ipynb)
|
||||
* [Optimize for Code Gen](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_openai_completion.ipynb)
|
||||
* [Optimize for Math](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_chatgpt_gpt4.ipynb)
|
||||
|
||||
Reference in New Issue
Block a user