Compare commits

..

7 Commits

Author SHA1 Message Date
Copilot
0b138d9193 Fix log_training_metric causing IndexError for time series models (#1469)
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
2026-01-10 18:07:17 +08:00
Li Jiang
1c9835dc0a Add support to Python 3.12, Sync Fabric till dc382961 (#1467)
* Merged PR 1686010: Bump version to 2.3.5.post2, Distribute source and wheel, Fix license-file, Only log better models

- Fix license-file
- Bump version to 2.3.5.post2
- Distribute source and wheel
- Log better models only
- Add artifact_path to register_automl_pipeline
- Improve logging of _automl_user_configurations

----
This pull request fixes the project’s configuration by updating the license metadata for compliance with FLAML OSS 2.3.5.

The changes in `/pyproject.toml` update the project’s license and readme metadata by replacing deprecated keys with the new structured fields.
- `/pyproject.toml`: Replaced `license_file` with `license = { text = "MIT" }`.
- `/pyproject.toml`: Replaced `description-file` with `readme = "README.md"`.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->

Related work items: #4252053

* Merged PR 1688479: Handle feature_importances_ is None, Catch RuntimeError and wait for spark cluster to recover

- Add warning message when feature_importances_ is None (#3982120)
- Catch RuntimeError and wait for spark cluster to recover (#3982133)

----
Bug fix.

This pull request prevents an AttributeError in the feature importance plotting function by adding a check for a `None` value with an informative warning message.
- `flaml/fabric/visualization.py`: Checks if `result.feature_importances_` is `None`, logs a warning with possible reasons, and returns early.
- `flaml/fabric/visualization.py`: Imports `logger` from `flaml.automl.logger` to support the warning message.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->

Related work items: #3982120, #3982133

* Removed deprecated metadata section

* Fix log_params, log_artifact doesn't support run_id in mlflow 2.6.0

* Remove autogen

* Remove autogen

* Remove autogen

* Merged PR 1776547: Fix flaky test test_automl

Don't throw error when time budget is not enough

----
#### AI description  (iteration 1)
#### PR Classification
Bug fix addressing a failing test in the AutoML notebook example.

#### PR Summary
This PR fixes a flaky test by adding a conditional check in the AutoML test that prints a message and exits early if no best estimator is set, thereby preventing unpredictable test failures.
- `test/automl/test_notebook_example.py`: Introduced a check to print "Training budget is not sufficient" and return if `automl.best_estimator` is not found.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->

Related work items: #4573514

* Merged PR 1777952: Fix unrecognized or malformed field 'license-file' when uploading wheel to feed

Try to fix InvalidDistribution: Invalid distribution metadata: unrecognized or malformed field 'license-file'

----
Bug fix addressing package metadata configuration.

This pull request fixes the error with unrecognized or malformed license file fields during wheel uploads by updating the setup configuration.
- In `setup.py`, added `license="MIT"` and `license_files=["LICENSE"]` to provide proper license metadata.
<!-- GitOpsUserAgent=GitOps.Apps.Server.pullrequestcopilot -->

Related work items: #4560034

* Cherry-pick Merged PR 1879296: Add support to python 3.12 and spark 4.0

* Cherry-pick Merged PR 1890869: Improve time_budget estimation for mlflow logging

* Cherry-pick Merged PR 1879296: Add support to python 3.12 and spark 4.0

* Disable openai workflow

* Add python 3.12 to test envs

* Manually trigger openai

* Support markdown files with underscore-prefixed file names

* Improve save dependencies

* SynapseML is not installed

* Fix syntax error:Module !flaml/autogen was never imported

* macos 3.12 also hangs

* fix syntax error

* Update python version in actions

* Install setuptools for using pkg_resources

* Fix test_automl_performance in Github actions

* Fix test_nested_run
2026-01-10 12:17:21 +08:00
Li Jiang
1285700d7a Update readme, bump version to 2.4.0, fix CI errors (#1466)
* Update gitignore

* Bump version to 2.4.0

* Update readme

* Pre-download california housing data

* Use pre-downloaded california housing data

* Pin lightning<=2.5.6

* Fix typo in find and replace

* Fix estimators has no attribute __sklearn_tags__

* Pin torch to 2.2.2 in tests

* Fix conflict

* Update pytorch-forecasting

* Update pytorch-forecasting

* Update pytorch-forecasting

* Use numpy<2 for testing

* Update scikit-learn

* Run Build and UT every other day

* Pin pip<24.1

* Pin pip<24.1 in pipeline

* Loosen pip, install pytorch_forecasting only in py311

* Add support to new versions of nlp dependecies

* Fix formats

* Remove redefinition

* Update mlflow versions

* Fix mlflow version syntax

* Update gitignore

* Clean up cache to free space

* Remove clean up action cache

* Fix blendsearch

* Update test workflow

* Update setup.py

* Fix catboost version

* Update workflow

* Prepare for python 3.14

* Support no catboost

* Fix tests

* Fix python_requires

* Update test workflow

* Fix vw tests

* Remove python 3.9

* Fix nlp tests

* Fix prophet

* Print pip freeze for better debugging

* Fix Optuna search does not support parameters of type Float with samplers of type Quantized

* Save dependencies for later inspection

* Fix coverage.xml not exists

* Fix github action permission

* Handle python 3.13

* Address openml is not installed

* Check dependencies before run tests

* Update dependencies

* Fix syntax error

* Use bash

* Update dependencies

* Fix git error

* Loose mlflow constraints

* Add rerun, use mlflow-skinny

* Fix git error

* Remove ray tests

* Update xgboost versions

* Fix automl pickle error

* Don't test python 3.10 on macos as it's stuck

* Rebase before push

* Reduce number of branches
2026-01-09 13:40:52 +08:00
dependabot[bot]
7f42bece89 Bump algoliasearch-helper from 3.11.1 to 3.26.0 in /website (#1461)
* Bump algoliasearch-helper from 3.11.1 to 3.26.0 in /website

Bumps [algoliasearch-helper](https://github.com/algolia/instantsearch) from 3.11.1 to 3.26.0.
- [Release notes](https://github.com/algolia/instantsearch/releases)
- [Commits](https://github.com/algolia/instantsearch/commits/algoliasearch-helper@3.26.0)

---
updated-dependencies:
- dependency-name: algoliasearch-helper
  dependency-version: 3.26.0
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>

* Fix format error

* Fix format error

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
2025-10-09 14:37:31 +08:00
Keita Onabuta
e19107407b update loc second args - column (#1458)
Configure second args of loc function to time_col instead of dataframe - X.
2025-08-30 11:07:19 +08:00
Li Jiang
f5d6693253 Bump version to 2.3.7 (#1457) 2025-08-26 14:59:32 +08:00
Azamatkhan Arifkhanov
d4e43c50a2 Fix OSError: [Errno 24] Too many open files: 'nul' (#1455)
* Update model.py

Added closing of save_fds.

* Updated model.py for pre-commit requirements
2025-08-26 12:50:22 +08:00
60 changed files with 1065 additions and 384 deletions

View File

@@ -1,5 +1,7 @@
[run]
branch = True
source = flaml
source =
flaml
omit =
*test*
*/test/*
*/flaml/autogen/*

View File

@@ -13,7 +13,7 @@ jobs:
strategy:
matrix:
os: ["ubuntu-latest"]
python-version: ["3.10"]
python-version: ["3.12"]
runs-on: ${{ matrix.os }}
environment: package
steps:

View File

@@ -37,11 +37,11 @@ jobs:
- name: setup python
uses: actions/setup-python@v4
with:
python-version: "3.10"
python-version: "3.12"
- name: pydoc-markdown install
run: |
python -m pip install --upgrade pip
pip install pydoc-markdown==4.7.0
pip install pydoc-markdown==4.7.0 setuptools
- name: pydoc-markdown run
run: |
pydoc-markdown
@@ -73,11 +73,11 @@ jobs:
- name: setup python
uses: actions/setup-python@v4
with:
python-version: "3.10"
python-version: "3.12"
- name: pydoc-markdown install
run: |
python -m pip install --upgrade pip
pip install pydoc-markdown==4.7.0
pip install pydoc-markdown==4.7.0 setuptools
- name: pydoc-markdown run
run: |
pydoc-markdown

View File

@@ -4,14 +4,15 @@
name: OpenAI
on:
pull_request:
branches: ['main']
paths:
- 'flaml/autogen/**'
- 'test/autogen/**'
- 'notebook/autogen_openai_completion.ipynb'
- 'notebook/autogen_chatgpt_gpt4.ipynb'
- '.github/workflows/openai.yml'
workflow_dispatch:
# pull_request:
# branches: ['main']
# paths:
# - 'flaml/autogen/**'
# - 'test/autogen/**'
# - 'notebook/autogen_openai_completion.ipynb'
# - 'notebook/autogen_chatgpt_gpt4.ipynb'
# - '.github/workflows/openai.yml'
permissions: {}

View File

@@ -22,8 +22,12 @@ on:
- 'setup.py'
merge_group:
types: [checks_requested]
schedule:
# Every other day at 02:00 UTC
- cron: '0 2 */2 * *'
permissions: {}
permissions:
contents: write
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
@@ -36,7 +40,12 @@ jobs:
fail-fast: false
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
python-version: ["3.9", "3.10", "3.11"]
python-version: ["3.10", "3.11", "3.12"]
exclude:
- os: macos-latest
python-version: "3.10" # macOS runners will hang on python 3.10 for unknown reasons
- os: macos-latest
python-version: "3.12" # macOS runners will hang on python 3.12 for unknown reasons
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
@@ -44,7 +53,7 @@ jobs:
with:
python-version: ${{ matrix.python-version }}
- name: On mac, install libomp to facilitate lgbm and xgboost install
if: matrix.os == 'macOS-latest'
if: matrix.os == 'macos-latest'
run: |
brew update
brew install libomp
@@ -60,72 +69,70 @@ jobs:
pip install -e .
python -c "import flaml"
pip install -e .[test]
- name: On Ubuntu python 3.10, install pyspark 3.4.1
if: matrix.python-version == '3.10' && matrix.os == 'ubuntu-latest'
run: |
pip install pyspark==3.4.1
pip list | grep "pyspark"
- name: On Ubuntu python 3.11, install pyspark 3.5.1
if: matrix.python-version == '3.11' && matrix.os == 'ubuntu-latest'
run: |
pip install pyspark==3.5.1
pip list | grep "pyspark"
- name: If linux and python<3.11, install ray 2
if: matrix.os == 'ubuntu-latest' && matrix.python-version != '3.11'
- name: On Ubuntu python 3.12, install pyspark 4.0.1
if: matrix.python-version == '3.12' && matrix.os == 'ubuntu-latest'
run: |
pip install "ray[tune]<2.5.0"
- name: If mac and python 3.10, install ray and xgboost 1
if: matrix.os == 'macOS-latest' && matrix.python-version == '3.10'
run: |
pip install -e .[ray]
# use macOS to test xgboost 1, but macOS also supports xgboost 2
pip install "xgboost<2"
- name: If linux, install prophet on python < 3.9
if: matrix.os == 'ubuntu-latest' && matrix.python-version == '3.8'
pip install pyspark==4.0.1
pip list | grep "pyspark"
# # TODO: support ray
# - name: If linux and python<3.11, install ray 2
# if: matrix.os == 'ubuntu-latest' && matrix.python-version < '3.11'
# run: |
# pip install "ray[tune]<2.5.0"
- name: Install prophet when on linux
if: matrix.os == 'ubuntu-latest'
run: |
pip install -e .[forecast]
- name: Install vw on python < 3.10
if: matrix.python-version == '3.8' || matrix.python-version == '3.9'
# TODO: support vw for python 3.10+
- name: If linux and python<3.10, install vw
if: matrix.os == 'ubuntu-latest' && matrix.python-version < '3.10'
run: |
pip install -e .[vw]
- name: Test with pytest
if: matrix.python-version != '3.10'
- name: Pip freeze
run: |
pytest test/ --ignore=test/autogen
pip freeze
- name: Check dependencies
run: |
python test/check_dependency.py
- name: Clear pip cache
run: |
pip cache purge
- name: Test with pytest
if: matrix.python-version != '3.11'
run: |
pytest test/ --ignore=test/autogen --reruns 2 --reruns-delay 10
- name: Coverage
if: matrix.python-version == '3.10'
if: matrix.python-version == '3.11'
run: |
pip install coverage
coverage run -a -m pytest test --ignore=test/autogen
coverage run -a -m pytest test --ignore=test/autogen --reruns 2 --reruns-delay 10
coverage xml
- name: Upload coverage to Codecov
if: matrix.python-version == '3.10'
if: matrix.python-version == '3.11'
uses: codecov/codecov-action@v3
with:
file: ./coverage.xml
flags: unittests
- name: Save dependencies
shell: bash
run: |
git config --global user.name 'github-actions[bot]'
git config --global user.email 'github-actions[bot]@users.noreply.github.com'
git config advice.addIgnoredFile false
# docs:
BRANCH=unit-tests-installed-dependencies
git fetch origin
git checkout -B "$BRANCH" "origin/$BRANCH"
# runs-on: ubuntu-latest
# steps:
# - uses: actions/checkout@v3
# - name: Setup Python
# uses: actions/setup-python@v4
# with:
# python-version: '3.8'
# - name: Compile documentation
# run: |
# pip install -e .
# python -m pip install sphinx sphinx_rtd_theme
# cd docs
# make html
# - name: Deploy to GitHub pages
# if: ${{ github.ref == 'refs/heads/main' }}
# uses: JamesIves/github-pages-deploy-action@3.6.2
# with:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# BRANCH: gh-pages
# FOLDER: docs/_build/html
# CLEAN: true
pip freeze > installed_all_dependencies_${{ matrix.python-version }}_${{ matrix.os }}.txt
python test/check_dependency.py > installed_first_tier_dependencies_${{ matrix.python-version }}_${{ matrix.os }}.txt
git add installed_*dependencies*.txt
mv coverage.xml ./coverage_${{ matrix.python-version }}_${{ matrix.os }}.xml || true
git add -f ./coverage_${{ matrix.python-version }}_${{ matrix.os }}.xml || true
git commit -m "Update installed dependencies for Python ${{ matrix.python-version }} on ${{ matrix.os }}" || exit 0
git push origin "$BRANCH" --force

7
.gitignore vendored
View File

@@ -60,6 +60,7 @@ coverage.xml
.hypothesis/
.pytest_cache/
cover/
junit
# Translations
*.mo
@@ -172,7 +173,7 @@ test/default
test/housing.json
test/nlp/default/transformer_ms/seq-classification.json
flaml/fabric/fanova/_fanova.c
flaml/fabric/fanova/*fanova.c
# local config files
*.config.local
@@ -184,3 +185,7 @@ notebook/lightning_logs/
lightning_logs/
flaml/autogen/extensions/tmp/
test/autogen/my_tmp/
catboost_*
# Internal configs
.pypirc

View File

@@ -14,15 +14,9 @@
<br>
</p>
:fire: FLAML supports AutoML and Hyperparameter Tuning in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/automated-machine-learning-fabric). In addition, we've introduced Python 3.11 support, along with a range of new estimators, and comprehensive integration with MLflow—thanks to contributions from the Microsoft Fabric product team.
:fire: FLAML supports AutoML and Hyperparameter Tuning in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/automated-machine-learning-fabric). In addition, we've introduced Python 3.11 and 3.12 support, along with a range of new estimators, and comprehensive integration with MLflow—thanks to contributions from the Microsoft Fabric product team.
:fire: Heads-up: We have migrated [AutoGen](https://microsoft.github.io/autogen/) into a dedicated [github repository](https://github.com/microsoft/autogen). Alongside this move, we have also launched a dedicated [Discord](https://discord.gg/pAbnFJrkgZ) server and a [website](https://microsoft.github.io/autogen/) for comprehensive documentation.
:fire: The automated multi-agent chat framework in [AutoGen](https://microsoft.github.io/autogen/) is in preview from v2.0.0.
:fire: FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
:fire: [autogen](https://microsoft.github.io/autogen/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
:fire: Heads-up: [AutoGen](https://microsoft.github.io/autogen/) has moved to a dedicated [GitHub repository](https://github.com/microsoft/autogen). FLAML no longer includes the `autogen` module—please use AutoGen directly.
## What is FLAML
@@ -30,7 +24,7 @@ FLAML is a lightweight Python library for efficient automation of machine
learning and AI operations. It automates workflow based on large language models, machine learning models, etc.
and optimizes their performance.
- FLAML enables building next-gen GPT-X applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation and optimization of a complex GPT-X workflow. It maximizes the performance of GPT-X models and augments their weakness.
- FLAML enables economical automation and tuning for ML/AI workflows, including model selection and hyperparameter optimization under resource constraints.
- For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It is easy to customize or extend. Users can find their desired customizability from a smooth range.
- It supports fast and economical automatic tuning (e.g., inference hyperparameters for foundation models, configurations in MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations), capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping.
@@ -46,10 +40,10 @@ FLAML requires **Python version >= 3.9**. It can be installed from pip:
pip install flaml
```
Minimal dependencies are installed without extra options. You can install extra options based on the feature you need. For example, use the following to install the dependencies needed by the [`autogen`](https://microsoft.github.io/autogen/) package.
Minimal dependencies are installed without extra options. You can install extra options based on the feature you need. For example, use the following to install the dependencies needed by the [`automl`](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML) module.
```bash
pip install "flaml[autogen]"
pip install "flaml[automl]"
```
Find more options in [Installation](https://microsoft.github.io/FLAML/docs/Installation).
@@ -57,39 +51,6 @@ Each of the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/n
## Quickstart
- (New) The [autogen](https://microsoft.github.io/autogen/) package enables the next-gen GPT-X applications with a generic multi-agent conversation framework.
It offers customizable and conversable agents which integrate LLMs, tools and human.
By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For example,
```python
from flaml import autogen
assistant = autogen.AssistantAgent("assistant")
user_proxy = autogen.UserProxyAgent("user_proxy")
user_proxy.initiate_chat(
assistant,
message="Show me the YTD gain of 10 largest technology companies as of today.",
)
# This initiates an automated chat between the two agents to solve the task
```
Autogen also helps maximize the utility out of the expensive LLMs such as ChatGPT and GPT-4. It offers a drop-in replacement of `openai.Completion` or `openai.ChatCompletion` with powerful functionalites like tuning, caching, templating, filtering. For example, you can optimize generations by LLM with your own tuning data, success metrics and budgets.
```python
# perform tuning
config, analysis = autogen.Completion.tune(
data=tune_data,
metric="success",
mode="max",
eval_func=eval_func,
inference_budget=0.05,
optimization_budget=3,
num_samples=-1,
)
# perform inference for a test instance
response = autogen.Completion.create(context=test_instance, **config)
```
- With three lines of code, you can start using this economical and fast
AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
@@ -111,7 +72,10 @@ automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
```python
from flaml import tune
tune.run(evaluation_function, config={}, low_cost_partial_config={}, time_budget_s=3600)
tune.run(
evaluation_function, config={}, low_cost_partial_config={}, time_budget_s=3600
)
```
- [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.

View File

@@ -1,3 +1,12 @@
import warnings
from .agentchat import *
from .code_utils import DEFAULT_MODEL, FAST_MODEL
from .oai import *
warnings.warn(
"The `flaml.autogen` module is deprecated and will be removed in a future release. "
"Please refer to `https://github.com/microsoft/autogen` for latest usage.",
DeprecationWarning,
stacklevel=2,
)

View File

@@ -4,6 +4,7 @@
# * project root for license information.
from __future__ import annotations
import inspect
import json
import logging
import os
@@ -177,10 +178,11 @@ class AutoML(BaseEstimator):
['auto', 'cv', 'holdout'].
split_ratio: A float of the valiation data percentage for holdout.
n_splits: An integer of the number of folds for cross - validation.
log_type: A string of the log type, one of
['better', 'all'].
'better' only logs configs with better loss than previos iters
'all' logs all the tried configs.
log_type: Specifies which logs to save. One of ['better', 'all']. Default is 'better'.
- 'better': Logs configs and models (if `model_history` is True) only when the loss improves,
to `log_file_name` and MLflow, respectively.
- 'all': Logs all configs and models (if `model_history` is True), regardless of performance.
Note: Configs are always logged to MLflow if MLflow logging is enabled.
model_history: A boolean of whether to keep the best
model per estimator. Make sure memory is large enough if setting to True. Default False.
log_training_metric: A boolean of whether to log the training
@@ -401,6 +403,24 @@ class AutoML(BaseEstimator):
self._estimator_type = "classifier" if settings["task"] in CLASSIFICATION else "regressor"
self.best_run_id = None
def __getstate__(self):
"""Customize pickling to avoid serializing runtime-only objects.
MLflow's sklearn flavor serializes estimators via (cloud)pickle. During
AutoML fitting we may attach an internal mlflow integration instance
which holds `concurrent.futures.Future` objects and executors containing
thread locks, which are not picklable.
"""
state = self.__dict__.copy()
state.pop("mlflow_integration", None)
return state
def __setstate__(self, state):
self.__dict__.update(state)
# Ensure attribute exists post-unpickle.
self.mlflow_integration = None
def get_params(self, deep: bool = False) -> dict:
return self._settings.copy()
@@ -2156,7 +2176,7 @@ class AutoML(BaseEstimator):
use_spark=True,
force_cancel=self._force_cancel,
mlflow_exp_name=self._mlflow_exp_name,
automl_info=(mlflow_log_latency,), # pass automl info to tune.run
automl_info=(mlflow_log_latency, self._log_type), # pass automl info to tune.run
extra_tag=self.autolog_extra_tag,
# raise_on_failed_trial=False,
# keep_checkpoints_num=1,
@@ -2219,7 +2239,9 @@ class AutoML(BaseEstimator):
if better or self._log_type == "all":
self._log_trial(search_state, estimator)
if self.mlflow_integration:
self.mlflow_integration.record_state(self, search_state, estimator)
self.mlflow_integration.record_state(
self, search_state, estimator, better or self._log_type == "all"
)
def _log_trial(self, search_state, estimator):
if self._training_log:
@@ -2461,7 +2483,9 @@ class AutoML(BaseEstimator):
if better or self._log_type == "all":
self._log_trial(search_state, estimator)
if self.mlflow_integration:
self.mlflow_integration.record_state(self, search_state, estimator)
self.mlflow_integration.record_state(
self, search_state, estimator, better or self._log_type == "all"
)
logger.info(
" at {:.1f}s,\testimator {}'s best error={:.4f},\tbest estimator {}'s best error={:.4f}".format(

View File

@@ -5,6 +5,7 @@
import json
import os
import random
import re
import uuid
from datetime import datetime, timedelta
from decimal import ROUND_HALF_UP, Decimal
@@ -50,7 +51,10 @@ def load_openml_dataset(dataset_id, data_dir=None, random_state=0, dataset_forma
"""
import pickle
import openml
try:
import openml
except ImportError:
openml = None
from sklearn.model_selection import train_test_split
filename = "openml_ds" + str(dataset_id) + ".pkl"
@@ -61,15 +65,15 @@ def load_openml_dataset(dataset_id, data_dir=None, random_state=0, dataset_forma
dataset = pickle.load(f)
else:
print("download dataset from openml")
dataset = openml.datasets.get_dataset(dataset_id)
dataset = openml.datasets.get_dataset(dataset_id) if openml else None
if not os.path.exists(data_dir):
os.makedirs(data_dir)
with open(filepath, "wb") as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
print("Dataset name:", dataset.name)
print("Dataset name:", dataset.name) if dataset else None
try:
X, y, *__ = dataset.get_data(target=dataset.default_target_attribute, dataset_format=dataset_format)
except ValueError:
except (ValueError, AttributeError, TypeError):
from sklearn.datasets import fetch_openml
X, y = fetch_openml(data_id=dataset_id, return_X_y=True)
@@ -705,6 +709,14 @@ def auto_convert_dtypes_pandas(
"""
if na_values is None:
na_values = {"NA", "na", "NULL", "null", ""}
# Remove the empty string separately (handled by the regex `^\s*$`)
vals = [re.escape(v) for v in na_values if v != ""]
# Build inner alternation group
inner = "|".join(vals) if vals else ""
if inner:
pattern = re.compile(rf"^\s*(?:{inner})?\s*$")
else:
pattern = re.compile(r"^\s*$")
df_converted = df.convert_dtypes()
schema = {}
@@ -718,7 +730,11 @@ def auto_convert_dtypes_pandas(
for col in df.columns:
series = df[col]
# Replace NA-like values if string
series_cleaned = series.map(lambda x: np.nan if isinstance(x, str) and x.strip() in na_values else x)
if series.dtype == object:
mask = series.astype(str).str.match(pattern)
series_cleaned = series.where(~mask, np.nan)
else:
series_cleaned = series
# Skip conversion if already non-object data type, except bool which can potentially be categorical
if (

View File

@@ -127,9 +127,21 @@ def metric_loss_score(
import datasets
datasets_metric_name = huggingface_submetric_to_metric.get(metric_name, metric_name.split(":")[0])
metric = datasets.load_metric(datasets_metric_name, trust_remote_code=True)
metric_mode = huggingface_metric_to_mode[datasets_metric_name]
# datasets>=3 removed load_metric; prefer evaluate if available
try:
import evaluate
metric = evaluate.load(datasets_metric_name, trust_remote_code=True)
except Exception:
if hasattr(datasets, "load_metric"):
metric = datasets.load_metric(datasets_metric_name, trust_remote_code=True)
else:
from datasets import load_metric as _load_metric # older datasets
metric = _load_metric(datasets_metric_name, trust_remote_code=True)
if metric_name.startswith("seqeval"):
y_processed_true = [[labels[tr] for tr in each_list] for each_list in y_processed_true]
elif metric in ("pearsonr", "spearmanr"):
@@ -604,7 +616,12 @@ def _eval_estimator(
logger.warning(f"ValueError {e} happened in `metric_loss_score`, set `val_loss` to `np.inf`")
metric_for_logging = {"pred_time": pred_time}
if log_training_metric:
train_pred_y = get_y_pred(estimator, X_train, eval_metric, task)
# For time series forecasting, X_train may be a sampled dataset whose
# test partition can be empty. Use the training partition from X_val
# (which is the dataset used to define y_train above) to keep shapes
# aligned and avoid empty prediction inputs.
X_train_for_metric = X_val.X_train if isinstance(X_val, TimeSeriesDataset) else X_train
train_pred_y = get_y_pred(estimator, X_train_for_metric, eval_metric, task)
metric_for_logging["train_loss"] = metric_loss_score(
eval_metric,
train_pred_y,

View File

@@ -111,7 +111,7 @@ def limit_resource(memory_limit, time_limit):
pass
class BaseEstimator:
class BaseEstimator(sklearn.base.ClassifierMixin, sklearn.base.BaseEstimator):
"""The abstract class for all learners.
Typical examples:
@@ -2347,8 +2347,11 @@ class SGDEstimator(SKLearnEstimator):
params = super().config2params(config)
params["tol"] = params.get("tol", 0.0001)
params["loss"] = params.get("loss", None)
if params["loss"] is None and self._task.is_classification():
params["loss"] = "log_loss" if SKLEARN_VERSION >= "1.1" else "log"
if params["loss"] is None:
if self._task.is_classification():
params["loss"] = "log_loss" if SKLEARN_VERSION >= "1.1" else "log"
else:
params["loss"] = "squared_error"
if not self._task.is_classification() and "n_jobs" in params:
params.pop("n_jobs")
@@ -2820,7 +2823,7 @@ class suppress_stdout_stderr:
# Open a pair of null files
self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
# Save the actual stdout (1) and stderr (2) file descriptors.
self.save_fds = (os.dup(1), os.dup(2))
self.save_fds = [os.dup(1), os.dup(2)]
def __enter__(self):
# Assign the null pointers to stdout and stderr.
@@ -2832,5 +2835,5 @@ class suppress_stdout_stderr:
os.dup2(self.save_fds[0], 1)
os.dup2(self.save_fds[1], 2)
# Close the null files
os.close(self.null_fds[0])
os.close(self.null_fds[1])
for fd in self.null_fds + self.save_fds:
os.close(fd)

View File

@@ -77,6 +77,14 @@ class TrainingArgumentsForAuto(TrainingArguments):
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
# Newer versions of HuggingFace Transformers may access `TrainingArguments.generation_config`
# (e.g., in generation-aware trainers/callbacks). Keep this attribute to remain compatible
# while defaulting to None for non-generation tasks.
generation_config: Optional[object] = field(
default=None,
metadata={"help": "Optional generation config (or path) used by generation-aware trainers."},
)
@staticmethod
def load_args_from_console():
from dataclasses import fields

View File

@@ -1,3 +1,5 @@
import atexit
import logging
import os
os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
@@ -10,13 +12,14 @@ try:
from pyspark.pandas import Series as psSeries
from pyspark.pandas import set_option
from pyspark.sql import DataFrame as sparkDataFrame
from pyspark.sql import SparkSession
from pyspark.util import VersionUtils
except ImportError:
class psDataFrame:
pass
F = T = ps = sparkDataFrame = psSeries = psDataFrame
F = T = ps = sparkDataFrame = SparkSession = psSeries = psDataFrame
_spark_major_minor_version = set_option = None
ERROR = ImportError(
"""Please run pip install flaml[spark]
@@ -32,3 +35,60 @@ try:
from pandas import DataFrame, Series
except ImportError:
DataFrame = Series = pd = None
logger = logging.getLogger(__name__)
def disable_spark_ansi_mode():
"""Disable Spark ANSI mode if it is enabled."""
spark = SparkSession.getActiveSession() if hasattr(SparkSession, "getActiveSession") else None
adjusted = False
try:
ps_conf = ps.get_option("compute.fail_on_ansi_mode")
except Exception:
ps_conf = None
ansi_conf = [None, ps_conf] # ansi_conf and ps_conf original values
# Spark may store the config as string 'true'/'false' (or boolean in some contexts)
if spark is not None:
ansi_conf[0] = spark.conf.get("spark.sql.ansi.enabled")
ansi_enabled = (
(isinstance(ansi_conf[0], str) and ansi_conf[0].lower() == "true")
or (isinstance(ansi_conf[0], bool) and ansi_conf[0] is True)
or ansi_conf[0] is None
)
try:
if ansi_enabled:
logger.debug("Adjusting spark.sql.ansi.enabled to false")
spark.conf.set("spark.sql.ansi.enabled", "false")
adjusted = True
except Exception:
# If reading/setting options fail for some reason, keep going and let
# pandas-on-Spark raise a meaningful error later.
logger.exception("Failed to set spark.sql.ansi.enabled")
if ansi_conf[1]:
logger.debug("Adjusting pandas-on-Spark compute.fail_on_ansi_mode to False")
ps.set_option("compute.fail_on_ansi_mode", False)
adjusted = True
return spark, ansi_conf, adjusted
def restore_spark_ansi_mode(spark, ansi_conf, adjusted):
"""Restore Spark ANSI mode to its original setting."""
# Restore the original spark.sql.ansi.enabled to avoid persistent side-effects.
if adjusted and spark and ansi_conf[0] is not None:
try:
logger.debug(f"Restoring spark.sql.ansi.enabled to {ansi_conf[0]}")
spark.conf.set("spark.sql.ansi.enabled", ansi_conf[0])
except Exception:
logger.exception("Failed to restore spark.sql.ansi.enabled")
if adjusted and ansi_conf[1]:
logger.debug(f"Restoring pandas-on-Spark compute.fail_on_ansi_mode to {ansi_conf[1]}")
ps.set_option("compute.fail_on_ansi_mode", ansi_conf[1])
spark, ansi_conf, adjusted = disable_spark_ansi_mode()
atexit.register(restore_spark_ansi_mode, spark, ansi_conf, adjusted)

View File

@@ -59,17 +59,29 @@ def to_pandas_on_spark(
```
"""
set_option("compute.default_index_type", default_index_type)
if isinstance(df, (DataFrame, Series)):
return ps.from_pandas(df)
elif isinstance(df, sparkDataFrame):
if _spark_major_minor_version[0] == 3 and _spark_major_minor_version[1] < 3:
return df.to_pandas_on_spark(index_col=index_col)
try:
orig_ps_conf = ps.get_option("compute.fail_on_ansi_mode")
except Exception:
orig_ps_conf = None
if orig_ps_conf:
ps.set_option("compute.fail_on_ansi_mode", False)
try:
if isinstance(df, (DataFrame, Series)):
return ps.from_pandas(df)
elif isinstance(df, sparkDataFrame):
if _spark_major_minor_version[0] == 3 and _spark_major_minor_version[1] < 3:
return df.to_pandas_on_spark(index_col=index_col)
else:
return df.pandas_api(index_col=index_col)
elif isinstance(df, (psDataFrame, psSeries)):
return df
else:
return df.pandas_api(index_col=index_col)
elif isinstance(df, (psDataFrame, psSeries)):
return df
else:
raise TypeError(f"{type(df)} is not one of pandas.DataFrame, pandas.Series and pyspark.sql.DataFrame")
raise TypeError(f"{type(df)} is not one of pandas.DataFrame, pandas.Series and pyspark.sql.DataFrame")
finally:
# Restore original config
if orig_ps_conf:
ps.set_option("compute.fail_on_ansi_mode", orig_ps_conf)
def train_test_split_pyspark(

View File

@@ -529,7 +529,7 @@ def remove_ts_duplicates(
duplicates = X.duplicated()
if any(duplicates):
logger.warning("Duplicate timestamp values found in timestamp column. " f"\n{X.loc[duplicates, X][time_col]}")
logger.warning("Duplicate timestamp values found in timestamp column. " f"\n{X.loc[duplicates, time_col]}")
X = X.drop_duplicates()
logger.warning("Removed duplicate rows based on all columns")
assert (

View File

@@ -264,7 +264,8 @@ class TCNEstimator(TimeSeriesEstimator):
def predict(self, X):
X = self.enrich(X)
if isinstance(X, TimeSeriesDataset):
df = X.X_val
# Use X_train if X_val is empty (e.g., when computing training metrics)
df = X.X_val if len(X.test_data) > 0 else X.X_train
else:
df = X
dataset = DataframeDataset(

View File

@@ -1,3 +1,4 @@
import inspect
import time
try:
@@ -106,12 +107,17 @@ class TemporalFusionTransformerEstimator(TimeSeriesEstimator):
def fit(self, X_train, y_train, budget=None, **kwargs):
import warnings
import pytorch_lightning as pl
try:
import lightning.pytorch as pl
from lightning.pytorch.callbacks import EarlyStopping, LearningRateMonitor
from lightning.pytorch.loggers import TensorBoardLogger
except ImportError:
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
import torch
from pytorch_forecasting import TemporalFusionTransformer
from pytorch_forecasting.metrics import QuantileLoss
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
# a bit of monkey patching to fix the MacOS test
# all the log_prediction method appears to do is plot stuff, which ?breaks github tests
@@ -132,12 +138,26 @@ class TemporalFusionTransformerEstimator(TimeSeriesEstimator):
lr_logger = LearningRateMonitor() # log the learning rate
logger = TensorBoardLogger(kwargs.get("log_dir", "lightning_logs")) # logging results to a tensorboard
default_trainer_kwargs = dict(
gpus=self._kwargs.get("gpu_per_trial", [0]) if torch.cuda.is_available() else None,
max_epochs=max_epochs,
gradient_clip_val=gradient_clip_val,
callbacks=[lr_logger, early_stop_callback],
logger=logger,
)
# PyTorch Lightning >=2.0 replaced `gpus` with `accelerator`/`devices`.
# Also, passing `gpus=None` is not accepted on newer versions.
trainer_sig_params = inspect.signature(pl.Trainer.__init__).parameters
if torch.cuda.is_available() and "gpus" in trainer_sig_params:
gpus = self._kwargs.get("gpu_per_trial", None)
if gpus is not None:
default_trainer_kwargs["gpus"] = gpus
elif torch.cuda.is_available() and "devices" in trainer_sig_params:
devices = self._kwargs.get("gpu_per_trial", None)
if devices == -1:
devices = "auto"
if devices is not None:
default_trainer_kwargs["accelerator"] = "gpu"
default_trainer_kwargs["devices"] = devices
trainer = pl.Trainer(
**default_trainer_kwargs,
)
@@ -157,7 +177,14 @@ class TemporalFusionTransformerEstimator(TimeSeriesEstimator):
val_dataloaders=val_dataloader,
)
best_model_path = trainer.checkpoint_callback.best_model_path
best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path)
# PyTorch 2.6 changed `torch.load` default `weights_only` from False -> True.
# Some Lightning checkpoints (including those produced here) can require full unpickling.
# This path is generated locally during training, so it's trusted.
load_sig_params = inspect.signature(TemporalFusionTransformer.load_from_checkpoint).parameters
if "weights_only" in load_sig_params:
best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path, weights_only=False)
else:
best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path)
train_time = time.time() - current_time
self._model = best_tft
return train_time
@@ -170,7 +197,11 @@ class TemporalFusionTransformerEstimator(TimeSeriesEstimator):
last_data_cols = self.group_ids.copy()
last_data_cols.append(self.target_names[0])
last_data = self.data[lambda x: x.time_idx == x.time_idx.max()][last_data_cols]
decoder_data = X.X_val if isinstance(X, TimeSeriesDataset) else X
# Use X_train if test_data is empty (e.g., when computing training metrics)
if isinstance(X, TimeSeriesDataset):
decoder_data = X.X_val if len(X.test_data) > 0 else X.X_train
else:
decoder_data = X
if "time_idx" not in decoder_data:
decoder_data = add_time_idx_col(decoder_data)
decoder_data["time_idx"] += encoder_data["time_idx"].max() + 1 - decoder_data["time_idx"].min()

View File

@@ -9,6 +9,7 @@ import numpy as np
try:
import pandas as pd
from pandas import DataFrame, Series, to_datetime
from pandas.api.types import is_datetime64_any_dtype
from scipy.sparse import issparse
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
@@ -392,6 +393,15 @@ class DataTransformerTS:
assert len(self.num_columns) == 0, "Trying to call fit() twice, something is wrong"
for column in X.columns:
# Never treat the time column as a feature for sklearn preprocessing
if column == self.time_col:
continue
# Robust datetime detection (covers datetime64[ms/us/ns], tz-aware, etc.)
if is_datetime64_any_dtype(X[column]):
self.datetime_columns.append(column)
continue
# sklearn/utils/validation.py needs int/float values
if X[column].dtype.name in ("object", "category", "string"):
if (

View File

@@ -194,7 +194,13 @@ class Orbit(TimeSeriesEstimator):
elif isinstance(X, TimeSeriesDataset):
data = X
X = data.test_data[[self.time_col] + X.regressors]
# By default we predict on the dataset's test partition.
# Some internal call paths (e.g., training-metric logging) may pass a
# dataset whose test partition is empty; fall back to train partition.
if data.test_data is not None and len(data.test_data):
X = data.test_data[data.regressors + [data.time_col]]
else:
X = data.train_data[data.regressors + [data.time_col]]
if self._model is not None:
forecast = self._model.predict(X, **kwargs)
@@ -301,7 +307,13 @@ class Prophet(TimeSeriesEstimator):
if isinstance(X, TimeSeriesDataset):
data = X
X = data.test_data[data.regressors + [data.time_col]]
# By default we predict on the dataset's test partition.
# Some internal call paths (e.g., training-metric logging) may pass a
# dataset whose test partition is empty; fall back to train partition.
if data.test_data is not None and len(data.test_data):
X = data.test_data[data.regressors + [data.time_col]]
else:
X = data.train_data[data.regressors + [data.time_col]]
X = X.rename(columns={self.time_col: "ds"})
if self._model is not None:
@@ -327,11 +339,19 @@ class StatsModelsEstimator(TimeSeriesEstimator):
if isinstance(X, TimeSeriesDataset):
data = X
X = data.test_data[data.regressors + [data.time_col]]
# By default we predict on the dataset's test partition.
# Some internal call paths (e.g., training-metric logging) may pass a
# dataset whose test partition is empty; fall back to train partition.
if data.test_data is not None and len(data.test_data):
X = data.test_data[data.regressors + [data.time_col]]
else:
X = data.train_data[data.regressors + [data.time_col]]
else:
X = X[self.regressors + [self.time_col]]
if isinstance(X, DataFrame):
if X.shape[0] == 0:
return pd.Series([], name=self.target_names[0], dtype=float)
start = X[self.time_col].iloc[0]
end = X[self.time_col].iloc[-1]
if len(self.regressors):
@@ -829,6 +849,13 @@ class TS_SKLearn(TimeSeriesEstimator):
if isinstance(X, TimeSeriesDataset):
data = X
X = data.test_data
# By default we predict on the dataset's test partition.
# Some internal call paths (e.g., training-metric logging) may pass a
# dataset whose test partition is empty; fall back to train partition.
if data.test_data is not None and len(data.test_data):
X = data.test_data
else:
X = data.train_data
if self._model is not None:
X = X[self.regressors]

View File

@@ -32,6 +32,7 @@ def construct_portfolio(regret_matrix, meta_features, regret_bound):
if meta_features is not None:
scaler = RobustScaler()
meta_features = meta_features.loc[tasks]
meta_features = meta_features.astype(float)
meta_features.loc[:, :] = scaler.fit_transform(meta_features)
nearest_task = {}
for t in tasks:

View File

@@ -26,6 +26,7 @@ def config_predictor_tuple(tasks, configs, meta_features, regret_matrix):
# pre-processing
scaler = RobustScaler()
meta_features_norm = meta_features.loc[tasks] # this makes a copy
meta_features_norm = meta_features_norm.astype(float)
meta_features_norm.loc[:, :] = scaler.fit_transform(meta_features_norm)
proc = {

View File

@@ -567,7 +567,7 @@ class MLflowIntegration:
try:
with open(pickle_fpath, "wb") as f:
pickle.dump(obj, f)
mlflow.log_artifact(pickle_fpath, artifact_name, run_id)
self.mlflow_client.log_artifact(run_id, pickle_fpath, artifact_name)
return True
except Exception as e:
logger.debug(f"Failed to pickle and log {artifact_name}, error: {e}")
@@ -652,7 +652,7 @@ class MLflowIntegration:
return f"Successfully pickle_and_log_automl_artifacts {estimator} to run_id {run_id}"
@time_it
def record_state(self, automl, search_state, estimator):
def record_state(self, automl, search_state, estimator, is_log_model=True):
_st = time.time()
automl_metric_name = (
automl._state.metric if isinstance(automl._state.metric, str) else automl._state.error_metric
@@ -727,7 +727,7 @@ class MLflowIntegration:
self.futures[future] = f"iter_{automl._track_iter}_log_info_to_run"
future = executor.submit(lambda: self._log_automl_configurations(child_run.info.run_id))
self.futures[future] = f"iter_{automl._track_iter}_log_automl_configurations"
if automl._state.model_history:
if automl._state.model_history and is_log_model:
if estimator.endswith("_spark"):
future = executor.submit(
lambda: self.log_model(
@@ -797,8 +797,10 @@ class MLflowIntegration:
conf = automl._config_history[automl._best_iteration][1].copy()
if "ml" in conf.keys():
conf = conf["ml"]
mlflow.log_params({**conf, "best_learner": automl._best_estimator}, run_id=self.parent_run_id)
params_arr = [
Param(key, str(value)) for key, value in {**conf, "best_learner": automl._best_estimator}.items()
]
self.mlflow_client.log_batch(run_id=self.parent_run_id, metrics=[], params=params_arr, tags=[])
if not self.has_summary:
logger.info(f"logging best model {automl.best_estimator}")
future = executor.submit(lambda: self.copy_mlflow_run(best_mlflow_run_id, self.parent_run_id))
@@ -894,6 +896,7 @@ class MLflowIntegration:
),
)
self.child_counter = 0
num_infos = len(self.infos)
# From latest to earliest, remove duplicate cross-validation runs
_exist_child_run_params = [] # for deduplication of cross-validation child runs
@@ -958,22 +961,37 @@ class MLflowIntegration:
)
self.mlflow_client.set_tag(child_run_id, "flaml.child_counter", self.child_counter)
# merge autolog child run and corresponding manual run
flaml_info = self.infos[self.child_counter]
child_run = self.mlflow_client.get_run(child_run_id)
self._log_info_to_run(flaml_info, child_run_id, log_params=False)
# Merge autolog child run and corresponding FLAML trial info (if available).
# In nested scenarios (e.g., Tune -> AutoML -> MLflow autolog), MLflow can create
# more child runs than the number of FLAML trials recorded in self.infos.
# TODO: need more tests in nested scenarios.
flaml_info = None
child_run = None
if self.child_counter < num_infos:
flaml_info = self.infos[self.child_counter]
child_run = self.mlflow_client.get_run(child_run_id)
self._log_info_to_run(flaml_info, child_run_id, log_params=False)
if self.experiment_type == "automl":
if "learner" not in child_run.data.params:
self.mlflow_client.log_param(child_run_id, "learner", flaml_info["params"]["learner"])
if "sample_size" not in child_run.data.params:
self.mlflow_client.log_param(
child_run_id, "sample_size", flaml_info["params"]["sample_size"]
)
if self.experiment_type == "automl":
if "learner" not in child_run.data.params:
self.mlflow_client.log_param(child_run_id, "learner", flaml_info["params"]["learner"])
if "sample_size" not in child_run.data.params:
self.mlflow_client.log_param(
child_run_id, "sample_size", flaml_info["params"]["sample_size"]
)
else:
logger.debug(
"No corresponding FLAML info for MLflow child run %s (child_counter=%s, infos=%s); skipping merge.",
child_run_id,
self.child_counter,
num_infos,
)
if self.child_counter == best_iteration:
if flaml_info is not None and self.child_counter == best_iteration:
self.mlflow_client.set_tag(child_run_id, "flaml.best_run", True)
if result is not None:
if child_run is None:
child_run = self.mlflow_client.get_run(child_run_id)
result.best_run_id = child_run_id
result.best_run_name = child_run.info.run_name
self.best_run_id = child_run_id
@@ -997,7 +1015,7 @@ class MLflowIntegration:
self.resume_mlflow()
def register_automl_pipeline(automl, model_name=None, signature=None):
def register_automl_pipeline(automl, model_name=None, signature=None, artifact_path="model"):
pipeline = automl.automl_pipeline
if pipeline is None:
logger.warning("pipeline not found, cannot register it")
@@ -1007,7 +1025,7 @@ def register_automl_pipeline(automl, model_name=None, signature=None):
if automl.best_run_id is None:
mlflow.sklearn.log_model(
pipeline,
"automl_pipeline",
artifact_path,
registered_model_name=model_name,
signature=automl.pipeline_signature if signature is None else signature,
)
@@ -1017,5 +1035,5 @@ def register_automl_pipeline(automl, model_name=None, signature=None):
return mvs[0]
else:
best_run = mlflow.get_run(automl.best_run_id)
model_uri = f"runs:/{best_run.info.run_id}/automl_pipeline"
model_uri = f"runs:/{best_run.info.run_id}/{artifact_path}"
return mlflow.register_model(model_uri, model_name)

View File

@@ -244,13 +244,32 @@ class BlendSearch(Searcher):
evaluated_rewards=evaluated_rewards,
)
except (AssertionError, ValueError):
self._gs = GlobalSearch(
space=gs_space,
metric=metric,
mode=mode,
seed=gs_seed,
sampler=sampler,
)
try:
self._gs = GlobalSearch(
space=gs_space,
metric=metric,
mode=mode,
seed=gs_seed,
sampler=sampler,
)
except ValueError:
# Ray Tune's OptunaSearch converts Tune domains into Optuna
# distributions. Optuna disallows integer log distributions
# with step != 1 (e.g., qlograndint with q>1), which can
# raise here. Fall back to FLAML's OptunaSearch wrapper,
# which handles these spaces more permissively.
if getattr(GlobalSearch, "__module__", "").startswith("ray.tune"):
from .suggestion import OptunaSearch as _FallbackOptunaSearch
self._gs = _FallbackOptunaSearch(
space=gs_space,
metric=metric,
mode=mode,
seed=gs_seed,
sampler=sampler,
)
else:
raise
self._gs.space = space
else:
self._gs = None

View File

@@ -35,6 +35,73 @@ from ..sample import (
Quantized,
Uniform,
)
# If Ray is installed, flaml.tune may re-export Ray Tune sampling functions.
# In that case, the search space contains Ray Tune Domain/Sampler objects,
# which should be accepted by our Optuna search-space conversion.
try:
from ray import __version__ as _ray_version # type: ignore
if str(_ray_version).startswith("1."):
from ray.tune.sample import ( # type: ignore
Categorical as _RayCategorical,
)
from ray.tune.sample import (
Domain as _RayDomain,
)
from ray.tune.sample import (
Float as _RayFloat,
)
from ray.tune.sample import (
Integer as _RayInteger,
)
from ray.tune.sample import (
LogUniform as _RayLogUniform,
)
from ray.tune.sample import (
Quantized as _RayQuantized,
)
from ray.tune.sample import (
Uniform as _RayUniform,
)
else:
from ray.tune.search.sample import ( # type: ignore
Categorical as _RayCategorical,
)
from ray.tune.search.sample import (
Domain as _RayDomain,
)
from ray.tune.search.sample import (
Float as _RayFloat,
)
from ray.tune.search.sample import (
Integer as _RayInteger,
)
from ray.tune.search.sample import (
LogUniform as _RayLogUniform,
)
from ray.tune.search.sample import (
Quantized as _RayQuantized,
)
from ray.tune.search.sample import (
Uniform as _RayUniform,
)
_FLOAT_TYPES = (Float, _RayFloat)
_INTEGER_TYPES = (Integer, _RayInteger)
_CATEGORICAL_TYPES = (Categorical, _RayCategorical)
_DOMAIN_TYPES = (Domain, _RayDomain)
_QUANTIZED_TYPES = (Quantized, _RayQuantized)
_UNIFORM_TYPES = (Uniform, _RayUniform)
_LOGUNIFORM_TYPES = (LogUniform, _RayLogUniform)
except Exception: # pragma: no cover
_FLOAT_TYPES = (Float,)
_INTEGER_TYPES = (Integer,)
_CATEGORICAL_TYPES = (Categorical,)
_DOMAIN_TYPES = (Domain,)
_QUANTIZED_TYPES = (Quantized,)
_UNIFORM_TYPES = (Uniform,)
_LOGUNIFORM_TYPES = (LogUniform,)
from ..trial import flatten_dict, unflatten_dict
from .variant_generator import parse_spec_vars
@@ -850,19 +917,22 @@ class OptunaSearch(Searcher):
def resolve_value(domain: Domain) -> ot.distributions.BaseDistribution:
quantize = None
sampler = domain.get_sampler()
if isinstance(sampler, Quantized):
# Ray Tune Domains and FLAML Domains both provide get_sampler(), but
# fall back to the .sampler attribute for robustness.
sampler = domain.get_sampler() if hasattr(domain, "get_sampler") else getattr(domain, "sampler", None)
if isinstance(sampler, _QUANTIZED_TYPES) or type(sampler).__name__ == "Quantized":
quantize = sampler.q
sampler = sampler.sampler
if isinstance(sampler, LogUniform):
sampler = getattr(sampler, "sampler", None) or sampler.get_sampler()
if isinstance(sampler, _LOGUNIFORM_TYPES) or type(sampler).__name__ == "LogUniform":
logger.warning(
"Optuna does not handle quantization in loguniform "
"sampling. The parameter will be passed but it will "
"probably be ignored."
)
if isinstance(domain, Float):
if isinstance(sampler, LogUniform):
if isinstance(domain, _FLOAT_TYPES) or type(domain).__name__ == "Float":
if isinstance(sampler, _LOGUNIFORM_TYPES) or type(sampler).__name__ == "LogUniform":
if quantize:
logger.warning(
"Optuna does not support both quantization and "
@@ -870,17 +940,17 @@ class OptunaSearch(Searcher):
)
return ot.distributions.LogUniformDistribution(domain.lower, domain.upper)
elif isinstance(sampler, Uniform):
elif isinstance(sampler, _UNIFORM_TYPES) or type(sampler).__name__ == "Uniform":
if quantize:
return ot.distributions.DiscreteUniformDistribution(domain.lower, domain.upper, quantize)
return ot.distributions.UniformDistribution(domain.lower, domain.upper)
elif isinstance(domain, Integer):
if isinstance(sampler, LogUniform):
elif isinstance(domain, _INTEGER_TYPES) or type(domain).__name__ == "Integer":
if isinstance(sampler, _LOGUNIFORM_TYPES) or type(sampler).__name__ == "LogUniform":
# ``step`` argument Deprecated in v2.0.0. ``step`` argument should be 1 in Log Distribution
# The removal of this feature is currently scheduled for v4.0.0,
return ot.distributions.IntLogUniformDistribution(domain.lower, domain.upper - 1, step=1)
elif isinstance(sampler, Uniform):
elif isinstance(sampler, _UNIFORM_TYPES) or type(sampler).__name__ == "Uniform":
# Upper bound should be inclusive for quantization and
# exclusive otherwise
return ot.distributions.IntUniformDistribution(
@@ -888,16 +958,16 @@ class OptunaSearch(Searcher):
domain.upper - int(bool(not quantize)),
step=quantize or 1,
)
elif isinstance(domain, Categorical):
if isinstance(sampler, Uniform):
elif isinstance(domain, _CATEGORICAL_TYPES) or type(domain).__name__ == "Categorical":
if isinstance(sampler, _UNIFORM_TYPES) or type(sampler).__name__ == "Uniform":
return ot.distributions.CategoricalDistribution(domain.categories)
raise ValueError(
"Optuna search does not support parameters of type "
"`{}` with samplers of type `{}`".format(type(domain).__name__, type(domain.sampler).__name__)
"`{}` with samplers of type `{}`".format(type(domain).__name__, type(sampler).__name__)
)
# Parameter name is e.g. "a/b/c" for nested dicts
values = {"/".join(path): resolve_value(domain) for path, domain in domain_vars}
return values
return values

View File

@@ -261,7 +261,7 @@ def add_cost_to_space(space: Dict, low_cost_point: Dict, choice_cost: Dict):
low_cost[i] = point
if len(low_cost) > len(domain.categories):
if domain.ordered:
low_cost[-1] = int(np.where(ind == low_cost[-1])[0])
low_cost[-1] = int(np.where(ind == low_cost[-1])[0].item())
domain.low_cost_point = low_cost[-1]
return
if low_cost:

View File

@@ -776,7 +776,7 @@ def run(
and (num_samples < 0 or num_trials < num_samples)
and num_failures < upperbound_num_failures
):
if automl_info and automl_info[0] > 0 and time_budget_s < np.inf:
if automl_info and automl_info[1] == "all" and automl_info[0] > 0 and time_budget_s < np.inf:
time_budget_s -= automl_info[0] * n_concurrent_trials
logger.debug(f"Remaining time budget with mlflow log latency: {time_budget_s} seconds.")
while len(_runner.running_trials) < n_concurrent_trials:
@@ -802,9 +802,17 @@ def run(
)
results = None
with PySparkOvertimeMonitor(time_start, time_budget_s, force_cancel, parallel=parallel):
results = parallel(
delayed(evaluation_function)(trial_to_run.config) for trial_to_run in trials_to_run
)
try:
results = parallel(
delayed(evaluation_function)(trial_to_run.config) for trial_to_run in trials_to_run
)
except RuntimeError as e:
logger.warning(f"RuntimeError: {e}")
results = None
logger.info(
"Encountered RuntimeError. Waiting 10 seconds for Spark cluster to recover before retrying."
)
time.sleep(10)
# results = [evaluation_function(trial_to_run.config) for trial_to_run in trials_to_run]
while results:
result = results.pop(0)

View File

@@ -1 +1 @@
__version__ = "2.3.6"
__version__ = "2.4.0"

View File

@@ -2,7 +2,6 @@
license_file = "LICENSE"
description-file = "README.md"
[tool.pytest.ini_options]
addopts = '-m "not conda"'
markers = [

View File

@@ -51,60 +51,59 @@ setuptools.setup(
"joblib<=1.3.2",
],
"test": [
"jupyter",
"numpy>=1.17,<2.0.0; python_version<'3.13'",
"numpy>2.0.0; python_version>='3.13'",
"jupyter; python_version<'3.13'",
"lightgbm>=2.3.1",
"xgboost>=0.90,<2.0.0",
"xgboost>=0.90,<2.0.0; python_version<'3.11'",
"xgboost>=2.0.0; python_version>='3.11'",
"scipy>=1.4.1",
"pandas>=1.1.4,<2.0.0; python_version<'3.10'",
"pandas>=1.1.4; python_version>='3.10'",
"scikit-learn>=1.0.0",
"scikit-learn>=1.2.0",
"thop",
"pytest>=6.1.1",
"pytest-rerunfailures>=13.0",
"coverage>=5.3",
"pre-commit",
"torch",
"torchvision",
"catboost>=0.26,<1.2; python_version<'3.11'",
"catboost>=0.26; python_version>='3.11'",
"catboost>=0.26; python_version<'3.13'",
"rgf-python",
"optuna>=2.8.0,<=3.6.1",
"openml",
"openml; python_version<'3.13'",
"statsmodels>=0.12.2",
"psutil==5.8.0",
"psutil",
"dataclasses",
"transformers[torch]==4.26",
"datasets<=3.5.0",
"nltk<=3.8.1", # 3.8.2 doesn't work with mlflow
"transformers[torch]",
"datasets",
"evaluate",
"nltk!=3.8.2", # 3.8.2 doesn't work with mlflow
"rouge_score",
"hcrystalball==0.1.10",
"hcrystalball",
"seqeval",
"pytorch-forecasting>=0.9.0,<=0.10.1; python_version<'3.11'",
# "pytorch-forecasting==0.10.1; python_version=='3.11'",
"mlflow==2.15.1",
"pytorch-forecasting; python_version<'3.13'",
"mlflow-skinny<=2.22.1", # Refer to https://mvnrepository.com/artifact/org.mlflow/mlflow-spark
"joblibspark>=0.5.0",
"joblib<=1.3.2",
"nbconvert",
"nbformat",
"ipykernel",
"pytorch-lightning<1.9.1", # test_forecast_panel
"tensorboardX==2.6", # test_forecast_panel
"requests<2.29.0", # https://github.com/docker/docker-py/issues/3113
"pytorch-lightning", # test_forecast_panel
"tensorboardX", # test_forecast_panel
"requests", # https://github.com/docker/docker-py/issues/3113
"packaging",
"pydantic==1.10.9",
"sympy",
"wolframalpha",
"dill", # a drop in replacement of pickle
],
"catboost": [
"catboost>=0.26,<1.2; python_version<'3.11'",
"catboost>=0.26,<=1.2.5; python_version>='3.11'",
"catboost>=0.26",
],
"blendsearch": [
"optuna>=2.8.0,<=3.6.1",
"packaging",
],
"ray": [
"ray[tune]~=1.13",
"ray[tune]>=1.13,<2.5.0",
],
"azureml": [
"azureml-mlflow",
@@ -131,33 +130,21 @@ setuptools.setup(
"seqeval",
],
"ts_forecast": [
"holidays<0.14", # to prevent installation error for prophet
"prophet>=1.0.1",
"holidays",
"prophet>=1.1.5",
"statsmodels>=0.12.2",
"hcrystalball==0.1.10",
"hcrystalball>=0.1.10",
],
"forecast": [
"holidays<0.14", # to prevent installation error for prophet
"prophet>=1.0.1",
"holidays",
"prophet>=1.1.5",
"statsmodels>=0.12.2",
"hcrystalball==0.1.10",
"pytorch-forecasting>=0.9.0; python_version<'3.11'",
# "pytorch-forecasting==0.10.1; python_version=='3.11'",
"pytorch-lightning==1.9.0",
"tensorboardX==2.6",
"hcrystalball>=0.1.10",
"pytorch-forecasting>=0.10.4; python_version<'3.13'",
"pytorch-lightning>=1.9.0",
"tensorboardX>=2.6",
],
"benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3", "pandas==1.1.4"],
"openai": ["openai==0.27.8", "diskcache"],
"autogen": ["openai==0.27.8", "diskcache", "termcolor"],
"mathchat": ["openai==0.27.8", "diskcache", "termcolor", "sympy", "pydantic==1.10.9", "wolframalpha"],
"retrievechat": [
"openai==0.27.8",
"diskcache",
"termcolor",
"chromadb",
"tiktoken",
"sentence_transformers",
],
"synapse": [
"joblibspark>=0.5.0",
"optuna>=2.8.0,<=3.6.1",
@@ -170,9 +157,9 @@ setuptools.setup(
"Operating System :: OS Independent",
# Specify the Python versions you support here.
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
],
python_requires=">=3.9",
python_requires=">=3.10",
)

View File

@@ -4,8 +4,17 @@ import pytest
from flaml import AutoML, tune
try:
import transformers
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
_transformers_installed = True
except ImportError:
_transformers_installed = False
@pytest.mark.skipif(
sys.platform == "darwin" or not _transformers_installed, reason="do not run on mac os or transformers not installed"
)
def test_custom_hp_nlp():
from test.nlp.utils import get_automl_settings, get_toy_data_seqclassification

View File

@@ -1,3 +1,4 @@
import atexit
import os
import sys
import unittest
@@ -15,8 +16,16 @@ from sklearn.model_selection import train_test_split
from flaml import AutoML
from flaml.automl.ml import sklearn_metric_loss_score
from flaml.automl.spark import disable_spark_ansi_mode, restore_spark_ansi_mode
from flaml.tune.spark.utils import check_spark
try:
import pytorch_lightning
_pl_installed = True
except ImportError:
_pl_installed = False
pytestmark = pytest.mark.spark
leaderboard = defaultdict(dict)
@@ -39,7 +48,7 @@ else:
.config(
"spark.jars.packages",
(
"com.microsoft.azure:synapseml_2.12:1.0.2,"
"com.microsoft.azure:synapseml_2.12:1.1.0,"
"org.apache.hadoop:hadoop-azure:3.3.5,"
"com.microsoft.azure:azure-storage:8.6.6,"
f"org.mlflow:mlflow-spark_2.12:{mlflow.__version__}"
@@ -63,6 +72,9 @@ else:
except ImportError:
skip_spark = True
spark, ansi_conf, adjusted = disable_spark_ansi_mode()
atexit.register(restore_spark_ansi_mode, spark, ansi_conf, adjusted)
def _test_regular_models(estimator_list, task):
if isinstance(estimator_list, str):
@@ -271,7 +283,11 @@ class TestExtraModel(unittest.TestCase):
@unittest.skipIf(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_default_spark(self):
_test_spark_models(None, "classification")
# TODO: remove the estimator assignment once SynapseML supports spark 4+.
from flaml.automl.spark.utils import _spark_major_minor_version
estimator_list = ["rf_spark"] if _spark_major_minor_version[0] >= 4 else None
_test_spark_models(estimator_list, "classification")
def test_svc(self):
_test_regular_models("svc", "classification")
@@ -302,7 +318,7 @@ class TestExtraModel(unittest.TestCase):
def test_avg(self):
_test_forecast("avg")
@unittest.skipIf(skip_spark, reason="Skip on Mac or Windows")
@unittest.skipIf(skip_spark or not _pl_installed, reason="Skip on Mac or Windows or no pytorch_lightning.")
def test_tcn(self):
_test_forecast("tcn")

View File

@@ -10,7 +10,7 @@ from flaml import AutoML
from flaml.automl.task.time_series_task import TimeSeriesTask
def test_forecast_automl(budget=10, estimators_when_no_prophet=["arima", "sarimax", "holt-winters"]):
def test_forecast_automl(budget=20, estimators_when_no_prophet=["arima", "sarimax", "holt-winters"]):
# using dataframe
import statsmodels.api as sm
@@ -510,8 +510,12 @@ def get_stalliion_data():
"3.11" in sys.version,
reason="do not run on py 3.11",
)
def test_forecast_panel(budget=5):
data, special_days = get_stalliion_data()
def test_forecast_panel(budget=30):
try:
data, special_days = get_stalliion_data()
except ImportError:
print("pytorch_forecasting not installed")
return
time_horizon = 6 # predict six months
training_cutoff = data["time_idx"].max() - time_horizon
data["time_idx"] = data["time_idx"].astype("int")
@@ -677,11 +681,55 @@ def test_cv_step():
print("yahoo!")
def test_log_training_metric_ts_models():
"""Test that log_training_metric=True works with time series models (arima, sarimax, holt-winters)."""
import statsmodels.api as sm
from flaml.automl.task.time_series_task import TimeSeriesTask
estimators_all = TimeSeriesTask("forecast").estimators.keys()
estimators_to_test = ["xgboost", "arima", "lassolars", "tcn", "snaive", "prophet", "orbit"]
estimators = [
est for est in estimators_to_test if est in estimators_all
] # not all estimators available in current python env
print(f"Testing estimators: {estimators}")
# Prepare data
data = sm.datasets.co2.load_pandas().data["co2"]
data = data.resample("MS").mean()
data = data.bfill().ffill()
data = data.to_frame().reset_index()
data = data.rename(columns={"index": "ds", "co2": "y"})
num_samples = data.shape[0]
time_horizon = 12
split_idx = num_samples - time_horizon
df = data[:split_idx]
# Test each time series model with log_training_metric=True
for estimator in estimators:
print(f"\nTesting {estimator} with log_training_metric=True")
automl = AutoML()
settings = {
"time_budget": 3,
"metric": "mape",
"task": "forecast",
"eval_method": "holdout",
"label": "y",
"log_training_metric": True, # This should not cause errors
"estimator_list": [estimator],
}
automl.fit(dataframe=df, **settings, period=time_horizon, force_cancel=True)
print(f"{estimator} SUCCESS with log_training_metric=True")
if automl.best_estimator:
assert automl.best_estimator == estimator
if __name__ == "__main__":
# test_forecast_automl(60)
# test_multivariate_forecast_num(5)
# test_multivariate_forecast_cat(5)
test_numpy()
# test_numpy()
# test_forecast_classification(5)
# test_forecast_panel(5)
# test_cv_step()
test_log_training_metric_ts_models()

View File

@@ -1,8 +1,23 @@
import sys
import pytest
from minio.error import ServerError
from openml.exceptions import OpenMLServerException
try:
from minio.error import ServerError
except ImportError:
class ServerError(Exception):
pass
try:
from openml.exceptions import OpenMLServerException
except ImportError:
class OpenMLServerException(Exception):
pass
from requests.exceptions import ChunkedEncodingError, SSLError
@@ -64,6 +79,9 @@ def test_automl(budget=5, dataset_format="dataframe", hpo_method=None):
automl.fit(X_train=X_train, y_train=y_train, **settings)
""" retrieve best config and best learner """
print("Best ML leaner:", automl.best_estimator)
if not automl.best_estimator:
print("Training budget is not sufficient")
return
print("Best hyperparmeter config:", automl.best_config)
print(f"Best accuracy on validation data: {1 - automl.best_loss:.4g}")
print(f"Training duration of best run: {automl.best_config_train_time:.4g} s")

View File

@@ -38,7 +38,7 @@ class TestLogging(unittest.TestCase):
"keep_search_state": True,
"learner_selector": "roundrobin",
}
X_train, y_train = fetch_california_housing(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True, data_home="test")
n = len(y_train) >> 1
print(automl.model, automl.classes_, automl.predict(X_train))
automl.fit(

View File

@@ -47,7 +47,7 @@ class TestRegression(unittest.TestCase):
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = fetch_california_housing(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True, data_home="test")
n = int(len(y_train) * 9 // 10)
automl.fit(X_train=X_train[:n], y_train=y_train[:n], X_val=X_train[n:], y_val=y_train[n:], **automl_settings)
assert automl._state.eval_method == "holdout"
@@ -141,7 +141,7 @@ class TestRegression(unittest.TestCase):
"n_concurrent_trials": 10,
"hpo_method": hpo_method,
}
X_train, y_train = fetch_california_housing(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True, data_home="test")
try:
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
print(automl_experiment.predict(X_train))
@@ -268,7 +268,7 @@ def test_reproducibility_of_regression_models(estimator: str):
"skip_transform": True,
"retrain_full": True,
}
X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X, y = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
automl.fit(X_train=X, y_train=y, **automl_settings)
best_model = automl.model
assert best_model is not None
@@ -314,7 +314,7 @@ def test_reproducibility_of_catboost_regression_model():
"skip_transform": True,
"retrain_full": True,
}
X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X, y = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
automl.fit(X_train=X, y_train=y, **automl_settings)
best_model = automl.model
assert best_model is not None
@@ -360,7 +360,7 @@ def test_reproducibility_of_lgbm_regression_model():
"skip_transform": True,
"retrain_full": True,
}
X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X, y = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
automl.fit(X_train=X, y_train=y, **automl_settings)
best_model = automl.model
assert best_model is not None
@@ -424,7 +424,7 @@ def test_reproducibility_of_underlying_regression_models(estimator: str):
"skip_transform": True,
"retrain_full": False,
}
X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X, y = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
automl.fit(X_train=X, y_train=y, **automl_settings)
best_model = automl.model
assert best_model is not None

View File

@@ -142,7 +142,7 @@ class TestScore:
def test_regression(self):
automl_experiment = AutoML()
X_train, y_train = fetch_california_housing(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True, data_home="test")
n = int(len(y_train) * 9 // 10)
for each_estimator in [

View File

@@ -30,7 +30,7 @@ class TestTrainingLog(unittest.TestCase):
"keep_search_state": True,
"estimator_list": estimator_list,
}
X_train, y_train = fetch_california_housing(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True, data_home="test")
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
# Check if the training log file is populated.
self.assertTrue(os.path.exists(filename))

View File

@@ -108,7 +108,14 @@ class TestWarmStart(unittest.TestCase):
def test_FLAML_sample_size_in_starting_points(self):
from minio.error import ServerError
from openml.exceptions import OpenMLServerException
try:
from openml.exceptions import OpenMLServerException
except ImportError:
class OpenMLServerException(Exception):
pass
from requests.exceptions import ChunkedEncodingError, SSLError
from flaml import AutoML

BIN
test/cal_housing_py3.pkz Normal file

Binary file not shown.

60
test/check_dependency.py Normal file
View File

@@ -0,0 +1,60 @@
import subprocess
from importlib.metadata import distributions
installed_libs = sorted(f"{dist.metadata['Name']}=={dist.version}" for dist in distributions())
first_tier_dependencies = [
"numpy",
"jupyter",
"lightgbm",
"xgboost",
"scipy",
"pandas",
"scikit-learn",
"thop",
"pytest",
"pytest-rerunfailures",
"coverage",
"pre-commit",
"torch",
"torchvision",
"catboost",
"rgf-python",
"optuna",
"openml",
"statsmodels",
"psutil",
"dataclasses",
"transformers[torch]",
"transformers",
"datasets",
"evaluate",
"nltk",
"rouge_score",
"hcrystalball",
"seqeval",
"pytorch-forecasting",
"mlflow-skinny",
"joblibspark",
"joblib",
"nbconvert",
"nbformat",
"ipykernel",
"pytorch-lightning",
"tensorboardX",
"requests",
"packaging",
"dill",
"ray",
"prophet",
]
for lib in installed_libs:
lib_name = lib.split("==")[0]
if lib_name in first_tier_dependencies:
print(lib)
# print current commit hash
commit_hash = subprocess.check_output(["git", "rev-parse", "HEAD"]).decode("utf-8").strip()
print(f"Current commit hash: {commit_hash}")

View File

@@ -2,11 +2,24 @@ from typing import Any, Dict, List, Union
import numpy as np
import pandas as pd
from catboost import CatBoostClassifier, CatBoostRegressor, Pool
import pytest
from sklearn.metrics import f1_score, r2_score
try:
from catboost import CatBoostClassifier, CatBoostRegressor, Pool
except ImportError: # pragma: no cover
CatBoostClassifier = None
CatBoostRegressor = None
Pool = None
def evaluate_cv_folds_with_underlying_model(X_train_all, y_train_all, kf, model: Any, task: str) -> pd.DataFrame:
def _is_catboost_model_type(model_type: type) -> bool:
if CatBoostClassifier is not None and CatBoostRegressor is not None:
return model_type is CatBoostClassifier or model_type is CatBoostRegressor
return getattr(model_type, "__module__", "").startswith("catboost")
def evaluate_cv_folds_with_underlying_model(X_train_all, y_train_all, kf, model: Any, task: str) -> List[float]:
"""Mimic the FLAML CV process to calculate the metrics across each fold.
:param X_train_all: X training data
@@ -17,7 +30,7 @@ def evaluate_cv_folds_with_underlying_model(X_train_all, y_train_all, kf, model:
:return: An array containing the metrics
"""
rng = np.random.RandomState(2020)
all_fold_metrics: List[Dict[str, Union[int, float]]] = []
all_fold_metrics: List[float] = []
for train_index, val_index in kf.split(X_train_all, y_train_all):
X_train_split, y_train_split = X_train_all, y_train_all
train_index = rng.permutation(train_index)
@@ -25,9 +38,11 @@ def evaluate_cv_folds_with_underlying_model(X_train_all, y_train_all, kf, model:
X_val = X_train_split.iloc[val_index]
y_train, y_val = y_train_split[train_index], y_train_split[val_index]
model_type = type(model)
if model_type is not CatBoostClassifier and model_type is not CatBoostRegressor:
if not _is_catboost_model_type(model_type):
model.fit(X_train, y_train)
else:
if Pool is None:
pytest.skip("catboost is not installed")
use_best_model = True
n = max(int(len(y_train) * 0.9), len(y_train) - 1000) if use_best_model else len(y_train)
X_tr, y_tr = (X_train)[:n], y_train[:n]
@@ -38,5 +53,5 @@ def evaluate_cv_folds_with_underlying_model(X_train_all, y_train_all, kf, model:
reproduced_metric = 1 - f1_score(y_val, y_pred_classes)
else:
reproduced_metric = 1 - r2_score(y_val, y_pred_classes)
all_fold_metrics.append(reproduced_metric)
all_fold_metrics.append(float(reproduced_metric))
return all_fold_metrics

View File

@@ -60,7 +60,7 @@ def test_housing(as_frame=True):
"starting_points": "data",
"max_iter": 0,
}
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=as_frame)
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=as_frame, data_home="test")
automl.fit(X_train, y_train, **automl_settings)
@@ -115,7 +115,7 @@ def test_suggest_classification():
def test_suggest_regression():
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
suggested = suggest_hyperparams("regression", X_train, y_train, "lgbm", location=location)
print(suggested)
suggested = preprocess_and_suggest_hyperparams("regression", X_train, y_train, "xgboost", location=location)
@@ -137,7 +137,7 @@ def test_rf():
print(rf)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
rf = RandomForestRegressor(default_location=location)
rf.fit(X_train[:100], y_train[:100])
rf.predict(X_train)
@@ -155,7 +155,7 @@ def test_extratrees():
print(classifier)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
regressor = ExtraTreesRegressor(default_location=location)
regressor.fit(X_train[:100], y_train[:100])
regressor.predict(X_train)
@@ -175,7 +175,7 @@ def test_lgbm():
print(classifier.classes_)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
regressor = LGBMRegressor(default_location=location)
regressor.fit(X_train, y_train)
regressor.predict(X_train)
@@ -194,7 +194,7 @@ def test_xgboost():
print(classifier.classes_)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
regressor = XGBRegressor(default_location=location)
regressor.fit(X_train[:100], y_train[:100])
regressor.predict(X_train)

View File

@@ -3,6 +3,12 @@ import shutil
import sys
import pytest
try:
import transformers
except ImportError:
pytest.skip("transformers not installed", allow_module_level=True)
from utils import (
get_automl_settings,
get_toy_data_binclassification,

View File

@@ -5,10 +5,20 @@ import sys
import pytest
from utils import get_automl_settings, get_toy_data_seqclassification
try:
import transformers
_transformers_installed = True
except ImportError:
_transformers_installed = False
pytestmark = pytest.mark.spark # set to spark as parallel testing raised MlflowException of changing parameter
@pytest.mark.skipif(sys.platform in ["darwin", "win32"], reason="do not run on mac os or windows")
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or not _transformers_installed,
reason="do not run on mac os or windows or transformers not installed",
)
def test_cv():
import requests

View File

@@ -5,8 +5,18 @@ import sys
import pytest
from utils import get_automl_settings, get_toy_data_multiplechoiceclassification
try:
import transformers
@pytest.mark.skipif(sys.platform in ["darwin", "win32"], reason="do not run on mac os or windows")
_transformers_installed = True
except ImportError:
_transformers_installed = False
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or not _transformers_installed,
reason="do not run on mac os or windows or transformers not installed",
)
def test_mcc():
import requests

View File

@@ -7,8 +7,20 @@ from utils import get_automl_settings, get_toy_data_seqclassification
from flaml.default import portfolio
if sys.platform.startswith("darwin") and sys.version_info[0] == 3 and sys.version_info[1] == 11:
pytest.skip("skipping Python 3.11 on MacOS", allow_module_level=True)
try:
import transformers
_transformers_installed = True
except ImportError:
_transformers_installed = False
if (
sys.platform.startswith("darwin")
and sys.version_info >= (3, 11)
or not _transformers_installed
or sys.platform == "win32"
):
pytest.skip("skipping Python 3.11 on MacOS or without transformers or on Windows", allow_module_level=True)
pytestmark = (
pytest.mark.spark
@@ -28,23 +40,34 @@ def test_build_portfolio(path="./test/nlp/default", strategy="greedy"):
portfolio.main()
@pytest.mark.skipif(sys.platform == "win32", reason="do not run on windows")
def test_starting_point_not_in_search_space():
from flaml import AutoML
"""Regression test for invalid starting points and custom_hp.
This test must not require network access to Hugging Face.
"""
"""
test starting_points located outside of the search space, and custom_hp is not set
"""
from flaml.automl.state import SearchState
from flaml.automl.task.factory import task_factory
this_estimator_name = "transformer"
X_train, y_train, X_val, y_val, _ = get_toy_data_seqclassification()
X_train, y_train, _, _, _ = get_toy_data_seqclassification()
task = task_factory("seq-classification", X_train, y_train)
estimator_class = task.estimator_class_from_str(this_estimator_name)
estimator_class.init()
automl = AutoML()
automl_settings = get_automl_settings(estimator_name=this_estimator_name)
automl_settings["starting_points"] = {this_estimator_name: [{"learning_rate": 2e-3}]}
automl.fit(X_train, y_train, **automl_settings)
assert automl._search_states[this_estimator_name].init_config[0]["learning_rate"] != 2e-3
# SearchState is where invalid starting points are filtered out when max_iter > 1.
search_state = SearchState(
learner_class=estimator_class,
data=X_train,
task=task,
starting_point={"learning_rate": 2e-3},
max_iter=3,
budget=10,
)
assert search_state.init_config and search_state.init_config[0].get("learning_rate") != 2e-3
"""
test starting_points located outside of the search space, and custom_hp is set
@@ -52,39 +75,60 @@ def test_starting_point_not_in_search_space():
from flaml import tune
X_train, y_train, X_val, y_val, _ = get_toy_data_seqclassification()
X_train, y_train, _, _, _ = get_toy_data_seqclassification()
this_estimator_name = "transformer_ms"
automl = AutoML()
automl_settings = get_automl_settings(estimator_name=this_estimator_name)
task = task_factory("seq-classification", X_train, y_train)
estimator_class = task.estimator_class_from_str(this_estimator_name)
estimator_class.init()
automl_settings["custom_hp"] = {
this_estimator_name: {
"model_path": {
"domain": "albert-base-v2",
},
"learning_rate": {
"domain": tune.choice([1e-4, 1e-5]),
},
"per_device_train_batch_size": {
"domain": 2,
},
}
custom_hp = {
"model_path": {
"domain": "albert-base-v2",
},
"learning_rate": {
"domain": tune.choice([1e-4, 1e-5]),
},
"per_device_train_batch_size": {
"domain": 2,
},
}
automl_settings["starting_points"] = "data:test/nlp/default/"
automl.fit(X_train, y_train, **automl_settings)
assert len(automl._search_states[this_estimator_name].init_config[0]) == len(
automl._search_states[this_estimator_name]._search_space_domain
) - len(automl_settings["custom_hp"][this_estimator_name]), (
# Simulate a suggested starting point (e.g. from portfolio) which becomes invalid
# after custom_hp constrains the space.
invalid_starting_points = [
{
"learning_rate": 1e-5,
"num_train_epochs": 1.0,
"per_device_train_batch_size": 8,
"seed": 43,
"global_max_steps": 100,
"model_path": "google/electra-base-discriminator",
}
]
search_state = SearchState(
learner_class=estimator_class,
data=X_train,
task=task,
starting_point=invalid_starting_points,
custom_hp=custom_hp,
max_iter=3,
budget=10,
)
assert search_state.init_config, "Expected a non-empty init_config list"
init_config0 = search_state.init_config[0]
assert init_config0 is not None
assert len(init_config0) == len(search_state._search_space_domain) - len(custom_hp), (
"The search space is updated with the custom_hp on {} hyperparameters of "
"the specified estimator without an initial value. Thus a valid init config "
"should only contain the cardinality of the search space minus {}".format(
len(automl_settings["custom_hp"][this_estimator_name]),
len(automl_settings["custom_hp"][this_estimator_name]),
len(custom_hp),
len(custom_hp),
)
)
assert automl._search_states[this_estimator_name].search_space["model_path"] == "albert-base-v2"
assert search_state.search_space["model_path"] == "albert-base-v2"
if os.path.exists("test/data/output/"):
try:
@@ -93,7 +137,6 @@ def test_starting_point_not_in_search_space():
print("PermissionError when deleting test/data/output/")
@pytest.mark.skipif(sys.platform == "win32", reason="do not run on windows")
def test_points_to_evaluate():
from flaml import AutoML
@@ -106,7 +149,13 @@ def test_points_to_evaluate():
automl_settings["custom_hp"] = {"transformer_ms": {"model_path": {"domain": "google/electra-small-discriminator"}}}
automl.fit(X_train, y_train, **automl_settings)
try:
automl.fit(X_train, y_train, **automl_settings)
except OSError as e:
message = str(e)
if "Too Many Requests" in message or "rate limit" in message.lower():
pytest.skip(f"Skipping HF model load/training: {message}")
raise
if os.path.exists("test/data/output/"):
try:
@@ -116,7 +165,6 @@ def test_points_to_evaluate():
# TODO: implement _test_zero_shot_model
@pytest.mark.skipif(sys.platform == "win32", reason="do not run on windows")
def test_zero_shot_nomodel():
from flaml.default import preprocess_and_suggest_hyperparams
@@ -141,7 +189,14 @@ def test_zero_shot_nomodel():
fit_kwargs = automl_settings.pop("fit_kwargs_by_estimator", {}).get(estimator_name)
fit_kwargs.update(automl_settings)
pop_args(fit_kwargs)
model.fit(X_train, y_train, **fit_kwargs)
try:
model.fit(X_train, y_train, **fit_kwargs)
except OSError as e:
message = str(e)
if "Too Many Requests" in message or "rate limit" in message.lower():
pytest.skip(f"Skipping HF model load/training: {message}")
raise
if os.path.exists("test/data/output/"):
try:

View File

@@ -7,7 +7,7 @@ from sklearn.model_selection import train_test_split
from flaml import tune
from flaml.automl.model import LGBMEstimator
data = fetch_california_housing(return_X_y=False, as_frame=True)
data = fetch_california_housing(return_X_y=False, as_frame=True, data_home="test")
X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
X_train_ref = ray.put(X_train)

View File

@@ -11,7 +11,7 @@ automl_settings = {
"task": "regression",
"log_file_name": "test/california.log",
}
X_train, y_train = fetch_california_housing(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True, data_home="test")
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
print(automl.model)

View File

@@ -1,3 +1,4 @@
import atexit
import os
import sys
import warnings
@@ -10,6 +11,7 @@ from packaging.version import Version
from flaml import AutoML
from flaml.automl.data import auto_convert_dtypes_pandas, auto_convert_dtypes_spark, get_random_dataframe
from flaml.automl.spark import disable_spark_ansi_mode, restore_spark_ansi_mode
from flaml.tune.spark.utils import check_spark
warnings.simplefilter(action="ignore")
@@ -29,7 +31,7 @@ else:
.config(
"spark.jars.packages",
(
"com.microsoft.azure:synapseml_2.12:1.0.4,"
"com.microsoft.azure:synapseml_2.12:1.1.0,"
"org.apache.hadoop:hadoop-azure:3.3.5,"
"com.microsoft.azure:azure-storage:8.6.6,"
f"org.mlflow:mlflow-spark_2.12:{mlflow.__version__}"
@@ -55,6 +57,9 @@ else:
except ImportError:
skip_spark = True
spark, ansi_conf, adjusted = disable_spark_ansi_mode()
atexit.register(restore_spark_ansi_mode, spark, ansi_conf, adjusted)
if sys.version_info >= (3, 11):
skip_py311 = True
else:
@@ -64,6 +69,13 @@ pytestmark = [pytest.mark.skipif(skip_spark, reason="Spark is not installed. Ski
def _test_spark_synapseml_lightgbm(spark=None, task="classification"):
# TODO: remove the estimator assignment once SynapseML supports spark 4+.
from flaml.automl.spark.utils import _spark_major_minor_version
if _spark_major_minor_version[0] >= 4:
# skip synapseml lightgbm test for spark 4+
return
if task == "classification":
metric = "accuracy"
X_train, y_train = skds.load_iris(return_X_y=True, as_frame=True)
@@ -154,26 +166,31 @@ def test_spark_synapseml_rank():
def test_spark_input_df():
df = (
spark.read.format("csv")
.option("header", True)
.option("inferSchema", True)
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/company_bankruptcy_prediction_data.csv")
)
import pandas as pd
file_url = "https://mmlspark.blob.core.windows.net/publicwasb/company_bankruptcy_prediction_data.csv"
df = pd.read_csv(file_url)
df = spark.createDataFrame(df)
train, test = df.randomSplit([0.8, 0.2], seed=1)
feature_cols = df.columns[1:]
featurizer = VectorAssembler(inputCols=feature_cols, outputCol="features")
train_data = featurizer.transform(train)["Bankrupt?", "features"]
test_data = featurizer.transform(test)["Bankrupt?", "features"]
automl = AutoML()
# TODO: remove the estimator assignment once SynapseML supports spark 4+.
from flaml.automl.spark.utils import _spark_major_minor_version
estimator_list = ["rf_spark"] if _spark_major_minor_version[0] >= 4 else None
settings = {
"time_budget": 30, # total running time in seconds
"metric": "roc_auc",
# "estimator_list": ["lgbm_spark"], # list of ML learners; we tune lightgbm in this example
"task": "classification", # task type
"log_file_name": "flaml_experiment.log", # flaml log file
"seed": 7654321, # random seed
"eval_method": "holdout",
"estimator_list": estimator_list, # TODO: remove once SynapseML supports spark 4+
}
df = to_pandas_on_spark(to_pandas_on_spark(train_data).to_spark(index_col="index"))
@@ -184,6 +201,9 @@ def test_spark_input_df():
**settings,
)
if estimator_list == ["rf_spark"]:
return
try:
model = automl.model.estimator
predictions = model.transform(test_data)

View File

@@ -22,7 +22,7 @@ def base_automl(n_concurrent_trials=1, use_ray=False, use_spark=False, verbose=0
except (ServerError, Exception):
from sklearn.datasets import fetch_california_housing
X_train, y_train = fetch_california_housing(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True, data_home="test")
automl = AutoML()
settings = {
"time_budget": 3, # total running time in seconds

View File

@@ -1,3 +1,4 @@
import atexit
import importlib
import os
import sys
@@ -13,6 +14,7 @@ from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import flaml
from flaml.automl.spark import disable_spark_ansi_mode, restore_spark_ansi_mode
from flaml.automl.spark.utils import to_pandas_on_spark
try:
@@ -120,6 +122,29 @@ def _check_mlflow_logging(possible_num_runs, metric, is_parent_run, experiment_i
# mlflow.delete_experiment(experiment_id)
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_automl_nonsparkdata_noautolog_noparentrun():
experiment_id = _test_automl_nonsparkdata(is_autolog=False, is_parent_run=False)
_check_mlflow_logging(0, "r2", False, experiment_id, is_automl=True) # no logging
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_automl_sparkdata_noautolog_noparentrun():
experiment_id = _test_automl_sparkdata(is_autolog=False, is_parent_run=False)
_check_mlflow_logging(0, "mse", False, experiment_id, is_automl=True) # no logging
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_tune_noautolog_noparentrun_parallel():
experiment_id = _test_tune(is_autolog=False, is_parent_run=False, is_parallel=True)
_check_mlflow_logging(0, "r2", False, experiment_id)
def test_tune_noautolog_noparentrun_nonparallel():
experiment_id = _test_tune(is_autolog=False, is_parent_run=False, is_parallel=False)
_check_mlflow_logging(3, "r2", False, experiment_id, skip_tags=True)
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_tune_autolog_parentrun_parallel():
experiment_id = _test_tune(is_autolog=True, is_parent_run=True, is_parallel=True)
@@ -131,6 +156,16 @@ def test_tune_autolog_parentrun_nonparallel():
_check_mlflow_logging(3, "r2", True, experiment_id)
def test_tune_autolog_noparentrun_nonparallel():
experiment_id = _test_tune(is_autolog=True, is_parent_run=False, is_parallel=False)
_check_mlflow_logging(3, "r2", False, experiment_id)
def test_tune_noautolog_parentrun_nonparallel():
experiment_id = _test_tune(is_autolog=False, is_parent_run=True, is_parallel=False)
_check_mlflow_logging(3, "r2", True, experiment_id)
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_tune_autolog_noparentrun_parallel():
experiment_id = _test_tune(is_autolog=True, is_parent_run=False, is_parallel=True)
@@ -143,28 +178,12 @@ def test_tune_noautolog_parentrun_parallel():
_check_mlflow_logging([4, 3], "r2", True, experiment_id)
def test_tune_autolog_noparentrun_nonparallel():
experiment_id = _test_tune(is_autolog=True, is_parent_run=False, is_parallel=False)
_check_mlflow_logging(3, "r2", False, experiment_id)
def test_tune_noautolog_parentrun_nonparallel():
experiment_id = _test_tune(is_autolog=False, is_parent_run=True, is_parallel=False)
_check_mlflow_logging(3, "r2", True, experiment_id)
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_tune_noautolog_noparentrun_parallel():
experiment_id = _test_tune(is_autolog=False, is_parent_run=False, is_parallel=True)
_check_mlflow_logging(0, "r2", False, experiment_id)
def test_tune_noautolog_noparentrun_nonparallel():
experiment_id = _test_tune(is_autolog=False, is_parent_run=False, is_parallel=False)
_check_mlflow_logging(3, "r2", False, experiment_id, skip_tags=True)
def _test_automl_sparkdata(is_autolog, is_parent_run):
# TODO: remove the estimator assignment once SynapseML supports spark 4+.
from flaml.automl.spark.utils import _spark_major_minor_version
estimator_list = ["rf_spark"] if _spark_major_minor_version[0] >= 4 else None
mlflow.end_run()
mlflow_exp_name = f"test_mlflow_integration_{int(time.time())}"
mlflow_experiment = mlflow.set_experiment(mlflow_exp_name)
@@ -175,6 +194,9 @@ def _test_automl_sparkdata(is_autolog, is_parent_run):
if is_parent_run:
mlflow.start_run(run_name=f"automl_sparkdata_autolog_{is_autolog}")
spark = pyspark.sql.SparkSession.builder.getOrCreate()
spark, ansi_conf, adjusted = disable_spark_ansi_mode()
atexit.register(restore_spark_ansi_mode, spark, ansi_conf, adjusted)
pd_df = load_diabetes(as_frame=True).frame
df = spark.createDataFrame(pd_df)
df = df.repartition(4).cache()
@@ -193,6 +215,7 @@ def _test_automl_sparkdata(is_autolog, is_parent_run):
"log_type": "all",
"n_splits": 2,
"model_history": True,
"estimator_list": estimator_list,
}
df = to_pandas_on_spark(to_pandas_on_spark(train_data).to_spark(index_col="index"))
automl.fit(
@@ -252,12 +275,6 @@ def test_automl_sparkdata_noautolog_parentrun():
_check_mlflow_logging(3, "mse", True, experiment_id, is_automl=True)
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_automl_sparkdata_noautolog_noparentrun():
experiment_id = _test_automl_sparkdata(is_autolog=False, is_parent_run=False)
_check_mlflow_logging(0, "mse", False, experiment_id, is_automl=True) # no logging
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_automl_nonsparkdata_autolog_parentrun():
experiment_id = _test_automl_nonsparkdata(is_autolog=True, is_parent_run=True)
@@ -276,12 +293,6 @@ def test_automl_nonsparkdata_noautolog_parentrun():
_check_mlflow_logging([4, 3], "r2", True, experiment_id, is_automl=True)
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_automl_nonsparkdata_noautolog_noparentrun():
experiment_id = _test_automl_nonsparkdata(is_autolog=False, is_parent_run=False)
_check_mlflow_logging(0, "r2", False, experiment_id, is_automl=True) # no logging
@pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
def test_exit_pyspark_autolog():
import pyspark
@@ -319,6 +330,9 @@ def _init_spark_for_main():
"https://mmlspark.blob.core.windows.net/publicwasb/log_model_allowlist.txt",
)
spark, ansi_conf, adjusted = disable_spark_ansi_mode()
atexit.register(restore_spark_ansi_mode, spark, ansi_conf, adjusted)
if __name__ == "__main__":
_init_spark_for_main()

View File

@@ -2,8 +2,23 @@ import os
import sys
import pytest
from minio.error import ServerError
from openml.exceptions import OpenMLServerException
try:
from minio.error import ServerError
except ImportError:
class ServerError(Exception):
pass
try:
from openml.exceptions import OpenMLServerException
except ImportError:
class OpenMLServerException(Exception):
pass
from requests.exceptions import ChunkedEncodingError, SSLError
from flaml.tune.spark.utils import check_spark
@@ -16,14 +31,14 @@ pytestmark = [pytest.mark.skipif(skip_spark, reason="Spark is not installed. Ski
os.environ["FLAML_MAX_CONCURRENT"] = "2"
def run_automl(budget=3, dataset_format="dataframe", hpo_method=None):
def run_automl(budget=30, dataset_format="dataframe", hpo_method=None):
import urllib3
from flaml.automl.data import load_openml_dataset
performance_check_budget = 3600
if sys.platform == "darwin" or "nt" in os.name or "3.10" not in sys.version:
budget = 3 # revise the buget if the platform is not linux + python 3.10
budget = 30 # revise the buget if the platform is not linux + python 3.10
if budget >= performance_check_budget:
max_iter = 60
performance_check_budget = None
@@ -76,6 +91,11 @@ def run_automl(budget=3, dataset_format="dataframe", hpo_method=None):
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print(f"Best accuracy on validation data: {1 - automl.best_loss:.4g}")
if performance_check_budget is not None and automl.best_estimator is None:
# skip the performance check if no model is trained
# this happens sometimes in github actions ubuntu python 3.12 environment
print("Warning: no model is trained, skip performance check")
return
print(f"Training duration of best run: {automl.best_config_train_time:.4g} s")
print(automl.model.estimator)
print(automl.best_config_per_estimator)

View File

@@ -1,3 +1,4 @@
import atexit
import os
from functools import partial
from timeit import timeit
@@ -14,6 +15,7 @@ try:
from pyspark.sql import SparkSession
from flaml.automl.ml import sklearn_metric_loss_score
from flaml.automl.spark import disable_spark_ansi_mode, restore_spark_ansi_mode
from flaml.automl.spark.metrics import spark_metric_loss_score
from flaml.automl.spark.utils import (
iloc_pandas_on_spark,
@@ -24,6 +26,7 @@ try:
unique_value_first_index,
)
from flaml.tune.spark.utils import (
_spark_major_minor_version,
check_spark,
get_broadcast_data,
get_n_cpus,
@@ -35,10 +38,41 @@ try:
except ImportError:
print("Spark is not installed. Skip all spark tests.")
skip_spark = True
_spark_major_minor_version = (0, 0)
pytestmark = [pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests."), pytest.mark.spark]
@pytest.mark.skipif(_spark_major_minor_version[0] < 4, reason="Requires Spark 4.0+")
def test_to_pandas_on_spark_temp_override():
import pyspark.pandas as ps
from pyspark.sql import Row
from flaml.automl.spark.utils import to_pandas_on_spark
spark_session = SparkSession.builder.getOrCreate()
spark, ansi_conf, adjusted = disable_spark_ansi_mode()
atexit.register(restore_spark_ansi_mode, spark, ansi_conf, adjusted)
# Ensure we can toggle options
orig = ps.get_option("compute.fail_on_ansi_mode")
try:
spark_session.conf.set("spark.sql.ansi.enabled", "true")
ps.set_option("compute.fail_on_ansi_mode", True)
# create tiny spark df
sdf = spark_session.createDataFrame([Row(a=1, b=2)])
# Should not raise as our function temporarily disables fail_on_ansi_mode
pds = to_pandas_on_spark(sdf)
assert "a" in pds.columns
finally:
# restore test environment
ps.set_option("compute.fail_on_ansi_mode", orig)
spark_session.conf.set("spark.sql.ansi.enabled", "false")
def test_with_parameters_spark():
def train(config, data=None):
if isinstance(data, pyspark.broadcast.Broadcast):

View File

@@ -5,17 +5,38 @@ import sys
import unittest
import numpy as np
import openml
try:
import openml
except ImportError:
openml = None
import pandas as pd
import pytest
import scipy.sparse
from minio.error import ServerError
try:
from minio.error import ServerError
except ImportError:
class ServerError(Exception):
pass
from requests.exceptions import SSLError
from sklearn.metrics import mean_absolute_error, mean_squared_error
from flaml import AutoVW
from flaml.tune import loguniform, polynomial_expansion_set
try:
from vowpalwabbit import pyvw
except ImportError:
skip_vw_test = True
else:
skip_vw_test = False
pytest.skip("skipping if no openml", allow_module_level=True) if openml is None else None
VW_DS_DIR = "test/data/"
NS_LIST = list(string.ascii_lowercase) + list(string.ascii_uppercase)
logger = logging.getLogger(__name__)
@@ -351,14 +372,9 @@ def get_vw_tuning_problem(tuning_hp="NamesapceInteraction"):
return vw_oml_problem_args, vw_online_aml_problem
@pytest.mark.skipif(
"3.10" in sys.version or "3.11" in sys.version,
reason="do not run on py >= 3.10",
)
@pytest.mark.skipif(skip_vw_test, reason="vowpalwabbit not installed")
class TestAutoVW(unittest.TestCase):
def test_vw_oml_problem_and_vanilla_vw(self):
from vowpalwabbit import pyvw
try:
vw_oml_problem_args, vw_online_aml_problem = get_vw_tuning_problem()
except (SSLError, ServerError, Exception) as e:

View File

@@ -4,10 +4,17 @@ from collections import defaultdict
import numpy as np
import pytest
import thop
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
import thop
import torch
import torch.nn as nn
import torch.nn.functional as F
except ImportError:
thop = None
torch = None
nn = None
F = None
try:
import torchvision
@@ -16,6 +23,11 @@ except ImportError:
from flaml import tune
if thop is None or torch is None or nn is None or F is None or torchvision is None:
pytest.skip(
"skipping test_lexiflow.py because torch, torchvision or thop is not installed.", allow_module_level=True
)
DEVICE = torch.device("cpu")
BATCHSIZE = 128
N_TRAIN_EXAMPLES = BATCHSIZE * 30

View File

@@ -53,6 +53,11 @@ def _easy_objective(config):
def test_nested_run():
"""
nested tuning example: Tune -> AutoML -> MLflow autolog
mlflow logging is complicated in nested tuning. It's better to turn off mlflow autologging to avoid
potential issues in FLAML's mlflow_integration.adopt_children() function.
"""
from flaml import AutoML, tune
data, labels = sklearn.datasets.load_breast_cancer(return_X_y=True)

View File

@@ -6,12 +6,12 @@ from sklearn.model_selection import train_test_split
from flaml import tune
from flaml.automl.model import LGBMEstimator
data = fetch_california_housing(return_X_y=False, as_frame=True)
data = fetch_california_housing(return_X_y=False, as_frame=True, data_home="test")
df, X, y = data.frame, data.data, data.target
df_train, _, X_train, X_test, _, y_test = train_test_split(df, X, y, test_size=0.33, random_state=42)
csv_file_name = "test/housing.csv"
df_train.to_csv(csv_file_name, index=False)
# X, y = fetch_california_housing(return_X_y=True, as_frame=True)
# X, y = fetch_california_housing(return_X_y=True, as_frame=True, data_home="test")
# X_train, X_test, y_train, y_test = train_test_split(
# X, y, test_size=0.33, random_state=42
# )

View File

@@ -99,6 +99,12 @@ module.exports = {
'https://github.com/microsoft/FLAML/edit/main/website/',
remarkPlugins: [math],
rehypePlugins: [katex],
// Allow __init__.md and other underscore-prefixed markdown docs
exclude: [
'**/_*.{js,jsx,ts,tsx}',
'**/*.test.{js,jsx,ts,tsx}',
'**/__tests__/**',
],
},
theme: {
customCss: require.resolve('./src/css/custom.css'),

View File

@@ -2634,9 +2634,9 @@ ajv@^8.0.0, ajv@^8.8.0:
uri-js "^4.2.2"
algoliasearch-helper@^3.5.5:
version "3.11.1"
resolved "https://registry.npmmirror.com/algoliasearch-helper/-/algoliasearch-helper-3.11.1.tgz#d83ab7f1a2a374440686ef7a144b3c288b01188a"
integrity sha512-mvsPN3eK4E0bZG0/WlWJjeqe/bUD2KOEVOl0GyL/TGXn6wcpZU8NOuztGHCUKXkyg5gq6YzUakVTmnmSSO5Yiw==
version "3.26.0"
resolved "https://registry.yarnpkg.com/algoliasearch-helper/-/algoliasearch-helper-3.26.0.tgz#d6e283396a9fc5bf944f365dc3b712570314363f"
integrity sha512-Rv2x3GXleQ3ygwhkhJubhhYGsICmShLAiqtUuJTUkr9uOCOXyF2E71LVT4XDnVffbknv8XgScP4U0Oxtgm+hIw==
dependencies:
"@algolia/events" "^4.0.1"