fix: satisfy lint curly rule (#6310)

* fix: satisfy lint curly rule

* docs: apply oxfmt formatting
This commit is contained in:
Ayaan Zaidi
2026-02-01 20:04:53 +05:30
committed by GitHub
parent 8582ed4d4f
commit e9f70e8585
6 changed files with 57 additions and 37 deletions

View File

@@ -21,6 +21,7 @@ This folder stores **generated** and **config** files for documentation translat
```
Fields:
- `source`: English (or source) phrase to prefer.
- `target`: preferred translation output.

View File

@@ -4,29 +4,34 @@ read_when:
- You want to reduce LLM context growth from tool outputs
- You are tuning agents.defaults.contextPruning
---
# Session Pruning
Session pruning trims **old tool results** from the in-memory context right before each LLM call. It does **not** rewrite the on-disk session history (`*.jsonl`).
## When it runs
- When `mode: "cache-ttl"` is enabled and the last Anthropic call for the session is older than `ttl`.
- Only affects the messages sent to the model for that request.
- Only active for Anthropic API calls (and OpenRouter Anthropic models).
- For best results, match `ttl` to your model `cacheControlTtl`.
- After a prune, the TTL window resets so subsequent requests keep cache until `ttl` expires again.
- Only active for Anthropic API calls (and OpenRouter Anthropic models).
- For best results, match `ttl` to your model `cacheControlTtl`.
- After a prune, the TTL window resets so subsequent requests keep cache until `ttl` expires again.
## Smart defaults (Anthropic)
- **OAuth or setup-token** profiles: enable `cache-ttl` pruning and set heartbeat to `1h`.
- **API key** profiles: enable `cache-ttl` pruning, set heartbeat to `30m`, and default `cacheControlTtl` to `1h` on Anthropic models.
- If you set any of these values explicitly, OpenClaw does **not** override them.
## What this improves (cost + cache behavior)
- **Why prune:** Anthropic prompt caching only applies within the TTL. If a session goes idle past the TTL, the next request re-caches the full prompt unless you trim it first.
- **What gets cheaper:** pruning reduces the **cacheWrite** size for that first request after the TTL expires.
- **Why the TTL reset matters:** once pruning runs, the cache window resets, so followup requests can reuse the freshly cached prompt instead of re-caching the full history again.
- **What it does not do:** pruning doesnt add tokens or “double” costs; it only changes what gets cached on that first postTTL request.
## What can be pruned
- Only `toolResult` messages.
- User + assistant messages are **never** modified.
- The last `keepLastAssistants` assistant messages are protected; tool results after that cutoff are not pruned.
@@ -34,35 +39,43 @@ Session pruning trims **old tool results** from the in-memory context right befo
- Tool results containing **image blocks** are skipped (never trimmed/cleared).
## Context window estimation
Pruning uses an estimated context window (chars ≈ tokens × 4). The base window is resolved in this order:
1) `models.providers.*.models[].contextWindow` override.
2) Model definition `contextWindow` (from the model registry).
3) Default `200000` tokens.
1. `models.providers.*.models[].contextWindow` override.
2. Model definition `contextWindow` (from the model registry).
3. Default `200000` tokens.
If `agents.defaults.contextTokens` is set, it is treated as a cap (min) on the resolved window.
## Mode
### cache-ttl
- Pruning only runs if the last Anthropic call is older than `ttl` (default `5m`).
- When it runs: same soft-trim + hard-clear behavior as before.
## Soft vs hard pruning
- **Soft-trim**: only for oversized tool results.
- Keeps head + tail, inserts `...`, and appends a note with the original size.
- Skips results with image blocks.
- **Hard-clear**: replaces the entire tool result with `hardClear.placeholder`.
## Tool selection
- `tools.allow` / `tools.deny` support `*` wildcards.
- Deny wins.
- Matching is case-insensitive.
- Empty allow list => all tools allowed.
## Interaction with other limits
- Built-in tools already truncate their own output; session pruning is an extra layer that prevents long-running chats from accumulating too much tool output in the model context.
- Compaction is separate: compaction summarizes and persists, pruning is transient per request. See [/concepts/compaction](/concepts/compaction).
## Defaults (when enabled)
- `ttl`: `"5m"`
- `keepLastAssistants`: `3`
- `softTrimRatio`: `0.3`
@@ -72,33 +85,37 @@ If `agents.defaults.contextTokens` is set, it is treated as a cap (min) on the r
- `hardClear`: `{ enabled: true, placeholder: "[Old tool result content cleared]" }`
## Examples
Default (off):
```json5
{
agent: {
contextPruning: { mode: "off" }
}
contextPruning: { mode: "off" },
},
}
```
Enable TTL-aware pruning:
```json5
{
agent: {
contextPruning: { mode: "cache-ttl", ttl: "5m" }
}
contextPruning: { mode: "cache-ttl", ttl: "5m" },
},
}
```
Restrict pruning to specific tools:
```json5
{
agent: {
contextPruning: {
mode: "cache-ttl",
tools: { allow: ["exec", "read"], deny: ["*image*"] }
}
}
tools: { allow: ["exec", "read"], deny: ["*image*"] },
},
},
}
```

View File

@@ -1,14 +1,14 @@
---
read_when:
- 向新用户介绍 OpenClaw
- 向新用户介绍 OpenClaw
summary: OpenClaw 的顶层概述、功能特性与用途
x-i18n:
generated_at: "2026-02-01T13:34:09Z"
model: claude-opus-4-5
provider: pi
source_hash: 92462177964ac72c344d3e8613a3756bc8e06eb7844cda20a38cd43e7cadd3b2
source_path: index.md
workflow: 9
generated_at: "2026-02-01T13:34:09Z"
model: claude-opus-4-5
provider: pi
source_hash: 92462177964ac72c344d3e8613a3756bc8e06eb7844cda20a38cd43e7cadd3b2
source_path: index.md
workflow: 9
---
# OpenClaw 🦞

View File

@@ -1,15 +1,15 @@
---
read_when:
- 从零开始的首次设置
- 您希望找到从安装 → 上手引导 → 发送第一条消息的最快路径
- 从零开始的首次设置
- 您希望找到从安装 → 上手引导 → 发送第一条消息的最快路径
summary: 新手指南:从零开始到发送第一条消息(向导、认证、渠道、配对)
x-i18n:
generated_at: "2026-02-01T13:38:44Z"
model: claude-opus-4-5
provider: pi
source_hash: d0ebc83c10efc569eaf6fb32368a29ef75a373f15da61f3499621462f08aff63
source_path: start/getting-started.md
workflow: 9
generated_at: "2026-02-01T13:38:44Z"
model: claude-opus-4-5
provider: pi
source_hash: d0ebc83c10efc569eaf6fb32368a29ef75a373f15da61f3499621462f08aff63
source_path: start/getting-started.md
workflow: 9
---
# 快速入门

View File

@@ -1,15 +1,15 @@
---
read_when:
- 运行或配置上手引导向导
- 设置新机器
- 运行或配置上手引导向导
- 设置新机器
summary: CLI 上手引导向导Gateway、工作区、渠道和技能的引导式设置
x-i18n:
generated_at: "2026-02-01T13:49:20Z"
model: claude-opus-4-5
provider: pi
source_hash: 571302dcf63a0c700cab6b54964e524d75d98315d3b35fafe7232d2ce8199e83
source_path: start/wizard.md
workflow: 9
generated_at: "2026-02-01T13:49:20Z"
model: claude-opus-4-5
provider: pi
source_hash: 571302dcf63a0c700cab6b54964e524d75d98315d3b35fafe7232d2ce8199e83
source_path: start/wizard.md
workflow: 9
---
# 上手引导向导 (CLI)

View File

@@ -11,7 +11,9 @@ export type ContextWindowInfo = {
};
function normalizePositiveInt(value: unknown): number | null {
if (typeof value !== "number" || !Number.isFinite(value)) return null;
if (typeof value !== "number" || !Number.isFinite(value)) {
return null;
}
const int = Math.floor(value);
return int > 0 ? int : null;
}