mirror of
https://github.com/microsoft/FLAML.git
synced 2026-02-14 12:49:17 +08:00
Compare commits
17 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ae5f8e5426 | ||
|
|
bf95d7c455 | ||
|
|
0f99526b63 | ||
|
|
b8736bc600 | ||
|
|
4a8110c87b | ||
|
|
ec37ae8f8f | ||
|
|
840e3fc104 | ||
|
|
1560a6e52a | ||
|
|
7bd231e497 | ||
|
|
6ff0ed434b | ||
|
|
2d3bd84038 | ||
|
|
79a851e408 | ||
|
|
a1b0b303ed | ||
|
|
3328157f31 | ||
|
|
da88aa77e3 | ||
|
|
bd16eeee69 | ||
|
|
d18d292081 |
2
.github/workflows/python-package.yml
vendored
2
.github/workflows/python-package.yml
vendored
@@ -1,7 +1,7 @@
|
||||
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Python package
|
||||
name: Build
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
6
.gitignore
vendored
6
.gitignore
vendored
@@ -146,6 +146,10 @@ dmypy.json
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
/catboost_info
|
||||
|
||||
catboost_info
|
||||
notebook/*.pkl
|
||||
notebook/.azureml
|
||||
mlruns
|
||||
logs
|
||||
automl.pkl
|
||||
|
||||
38
README.md
38
README.md
@@ -1,3 +1,9 @@
|
||||
[](https://badge.fury.io/py/FLAML)
|
||||
[](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)
|
||||

|
||||
[](https://pepy.tech/project/flaml)
|
||||
[](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
|
||||
|
||||
# FLAML - Fast and Lightweight AutoML
|
||||
|
||||
<p align="center">
|
||||
@@ -5,13 +11,16 @@
|
||||
<br>
|
||||
</p>
|
||||
|
||||
FLAML is a Python library designed to automatically produce accurate machine
|
||||
learning models with low computational cost. It frees users from selecting
|
||||
learners and hyperparameters for each learner. It is fast and cheap.
|
||||
FLAML is a lightweight Python library that finds accurate machine
|
||||
learning models automatically, efficiently and economically. It frees users from selecting
|
||||
learners and hyperparameters for each learner. It is fast and economical.
|
||||
The simple and lightweight design makes it easy to extend, such as
|
||||
adding customized learners or metrics. FLAML is powered by a new, [cost-effective
|
||||
hyperparameter optimization](https://github.com/microsoft/FLAML/tree/main/flaml/tune)
|
||||
and learner selection method invented by Microsoft Research.
|
||||
FLAML leverages the structure of the search space to choose a search order optimized for both cost and error. For example, the system tends to propose cheap configurations at the beginning stage of the search,
|
||||
but quickly moves to configurations with high model complexity and large sample size when needed in the later stage of the search. For another example, it favors cheap learners in the beginning but penalizes them later if the error improvement is slow. The cost-bounded search and cost-based prioritization make a big difference in the the search efficiency under budget constraints.
|
||||
|
||||
FLAML is easy to use:
|
||||
|
||||
* With three lines of code, you can start using this economical and fast
|
||||
@@ -112,7 +121,7 @@ And they can be used in distributed HPO frameworks such as ray tune or nni.
|
||||
|
||||
For more technical details, please check our papers.
|
||||
|
||||
* [FLAML: A Fast and Lightweight AutoML Library](https://arxiv.org/abs/1911.04706). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. To appear in MLSys, 2021.
|
||||
* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. To appear in MLSys, 2021.
|
||||
```
|
||||
@inproceedings{wang2021flaml,
|
||||
title={FLAML: A Fast and Lightweight AutoML Library},
|
||||
@@ -122,7 +131,7 @@ For more technical details, please check our papers.
|
||||
}
|
||||
```
|
||||
* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.
|
||||
* Economical Hyperparameter Optimization With Blended Search Strategy. Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
|
||||
* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
|
||||
|
||||
## Contributing
|
||||
|
||||
@@ -130,6 +139,8 @@ This project welcomes contributions and suggestions. Most contributions require
|
||||
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
|
||||
the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
|
||||
|
||||
If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
|
||||
|
||||
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
|
||||
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
|
||||
provided by the bot. You will only need to do this once across all repos using our CLA.
|
||||
@@ -138,6 +149,23 @@ This project has adopted the [Microsoft Open Source Code of Conduct](https://ope
|
||||
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
|
||||
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
|
||||
|
||||
## Developing
|
||||
|
||||
### Setup:
|
||||
|
||||
```
|
||||
git clone https://github.com/microsoft/FLAML.git
|
||||
pip install -e .[test,notebook]
|
||||
```
|
||||
|
||||
### Coverage
|
||||
Any code you commit should generally not significantly impact coverage. To run all unit tests:
|
||||
```
|
||||
coverage run -m pytest test
|
||||
```
|
||||
|
||||
If all the tests are passed, please also test run notebook/flaml_automl to make sure your commit does not break the notebook example.
|
||||
|
||||
## Authors
|
||||
|
||||
* Chi Wang
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from flaml.searcher import CFO, BlendSearch, FLOW2
|
||||
from flaml.automl import AutoML
|
||||
from flaml.searcher import CFO, BlendSearch, FLOW2, BlendSearchTuner
|
||||
from flaml.automl import AutoML, logger_formatter
|
||||
from flaml.version import __version__
|
||||
import logging
|
||||
|
||||
@@ -7,10 +7,3 @@ import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
# Add the console handler.
|
||||
_ch = logging.StreamHandler()
|
||||
logger_formatter = logging.Formatter(
|
||||
'[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s',
|
||||
'%m-%d %H:%M:%S')
|
||||
_ch.setFormatter(logger_formatter)
|
||||
logger.addHandler(_ch)
|
||||
@@ -25,6 +25,10 @@ from .training_log import training_log_reader, training_log_writer
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
logger_formatter = logging.Formatter(
|
||||
'[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s',
|
||||
'%m-%d %H:%M:%S')
|
||||
|
||||
try:
|
||||
import mlflow
|
||||
except:
|
||||
@@ -249,6 +253,8 @@ class AutoML:
|
||||
|
||||
'''
|
||||
|
||||
from .version import __version__
|
||||
|
||||
def __init__(self):
|
||||
self._track_iter = 0
|
||||
self._state = AutoMLState()
|
||||
@@ -279,6 +285,22 @@ class AutoML:
|
||||
else:
|
||||
return None
|
||||
|
||||
def best_model_for_estimator(self, estimator_name):
|
||||
'''Return the best model found for a particular estimator
|
||||
|
||||
Args:
|
||||
estimator_name: a str of the estimator's name
|
||||
|
||||
Returns:
|
||||
An object with `predict()` and `predict_proba()` method (for
|
||||
classification), storing the best trained model for estimator_name.
|
||||
'''
|
||||
if estimator_name in self._search_states:
|
||||
state = self._search_states[estimator_name]
|
||||
if hasattr(state, 'trained_estimator'):
|
||||
return state.trained_estimator.model
|
||||
return None
|
||||
|
||||
@property
|
||||
def best_estimator(self):
|
||||
'''A string indicating the best estimator found.'''
|
||||
@@ -326,6 +348,10 @@ class AutoML:
|
||||
A numpy array of shape n * 1 - - each element is a predicted class
|
||||
label for an instance.
|
||||
'''
|
||||
if self._trained_estimator is None:
|
||||
warnings.warn(
|
||||
"No estimator is trained. Please run fit with enough budget.")
|
||||
return None
|
||||
X_test = self._preprocess(X_test)
|
||||
y_pred = self._trained_estimator.predict(X_test)
|
||||
if y_pred.ndim > 1: y_pred = y_pred.flatten()
|
||||
@@ -402,7 +428,7 @@ class AutoML:
|
||||
self._X_train_all, self._y_train_all = \
|
||||
self._transformer.fit_transform(X, y, self._state.task)
|
||||
self._label_transformer = self._transformer.label_transformer
|
||||
|
||||
self._sample_weight_full = self._state.fit_kwargs.get('sample_weight')
|
||||
if X_val is not None and y_val is not None:
|
||||
if not (isinstance(X_val, np.ndarray) or
|
||||
issparse(X_val) or
|
||||
@@ -446,7 +472,8 @@ class AutoML:
|
||||
self._X_train_all, self._y_train_all
|
||||
if issparse(X_train_all):
|
||||
X_train_all = X_train_all.tocsr()
|
||||
if self._state.task != 'regression':
|
||||
if self._state.task != 'regression' and self._state.fit_kwargs.get(
|
||||
'sample_weight') is None:
|
||||
# logger.info(f"label {pd.unique(y_train_all)}")
|
||||
label_set, counts = np.unique(y_train_all, return_counts=True)
|
||||
# augment rare classes
|
||||
@@ -562,6 +589,12 @@ class AutoML:
|
||||
self._state.y_val = (X_train, y_train, X_val, y_val)
|
||||
if self._split_type == "stratified":
|
||||
logger.info("Using StratifiedKFold")
|
||||
assert y_train_all.size >= n_splits, (
|
||||
f"{n_splits}-fold cross validation"
|
||||
f" requires input data with at least {n_splits} examples.")
|
||||
assert y_train_all.size >= 2*n_splits, (
|
||||
f"{n_splits}-fold cross validation with metric=r2 "
|
||||
f"requires input data with at least {n_splits*2} examples.")
|
||||
self._state.kf = RepeatedStratifiedKFold(n_splits=n_splits,
|
||||
n_repeats=1, random_state=RANDOM_SEED)
|
||||
else:
|
||||
@@ -756,6 +789,7 @@ class AutoML:
|
||||
split_type="stratified",
|
||||
learner_selector='sample',
|
||||
hpo_method=None,
|
||||
verbose=1,
|
||||
**fit_kwargs):
|
||||
'''Find a model for a given task
|
||||
|
||||
@@ -814,6 +848,8 @@ class AutoML:
|
||||
y_val: None | a numpy array or a pandas series of validation labels
|
||||
sample_weight_val: None | a numpy array of the sample weight of
|
||||
validation data
|
||||
verbose: int, default=1 | Controls the verbosity, higher means more
|
||||
messages
|
||||
**fit_kwargs: Other key word arguments to pass to fit() function of
|
||||
the searched learners, such sample_weight
|
||||
'''
|
||||
@@ -826,6 +862,10 @@ class AutoML:
|
||||
self._search_states = {} #key: estimator name; value: SearchState
|
||||
self._random = np.random.RandomState(RANDOM_SEED)
|
||||
self._learner_selector = learner_selector
|
||||
old_level = logger.getEffectiveLevel()
|
||||
self.verbose = verbose
|
||||
if verbose==0:
|
||||
logger.setLevel(logging.WARNING)
|
||||
if self._state.task == 'classification':
|
||||
self._state.task = get_classification_objective(
|
||||
len(np.unique(self._y_train_all)))
|
||||
@@ -836,6 +876,11 @@ class AutoML:
|
||||
if eval_method == 'auto' or self._state.X_val is not None:
|
||||
eval_method = self._decide_eval_method(time_budget)
|
||||
self._state.eval_method = eval_method
|
||||
if (not mlflow or not mlflow.active_run()) and not logger.handlers:
|
||||
# Add the console handler.
|
||||
_ch = logging.StreamHandler()
|
||||
_ch.setFormatter(logger_formatter)
|
||||
logger.addHandler(_ch)
|
||||
logger.info("Evaluation method: {}".format(eval_method))
|
||||
|
||||
self._retrain_full = retrain_full and (eval_method == 'holdout' and
|
||||
@@ -892,6 +937,8 @@ class AutoML:
|
||||
self._state.n_jobs = n_jobs
|
||||
self._search()
|
||||
logger.info("fit succeeded")
|
||||
if verbose==0:
|
||||
logger.setLevel(old_level)
|
||||
|
||||
def _search(self):
|
||||
# initialize the search_states
|
||||
@@ -1004,7 +1051,7 @@ class AutoML:
|
||||
init_config=None,
|
||||
search_alg=search_state.search_alg,
|
||||
time_budget_s=budget_left,
|
||||
verbose=0, local_dir='logs/tune_results',
|
||||
verbose=max(self.verbose-1,0), #local_dir='logs/tune_results',
|
||||
use_ray=False,
|
||||
)
|
||||
# warnings.resetwarnings()
|
||||
@@ -1060,7 +1107,7 @@ class AutoML:
|
||||
search_state.best_config,
|
||||
estimator,
|
||||
search_state.sample_size)
|
||||
if mlflow is not None:
|
||||
if mlflow is not None and mlflow.active_run():
|
||||
with mlflow.start_run(nested=True) as run:
|
||||
mlflow.log_metric('iter_counter',
|
||||
self._iter_per_learner[estimator])
|
||||
@@ -1093,8 +1140,9 @@ class AutoML:
|
||||
self._state.best_loss))
|
||||
else:
|
||||
logger.info(f"no enough budget for learner {estimator}")
|
||||
self.estimator_list.remove(estimator)
|
||||
self._estimator_index -= 1
|
||||
if self._estimator_index is not None:
|
||||
self.estimator_list.remove(estimator)
|
||||
self._estimator_index -= 1
|
||||
if self._retrain_full and best_config_sig and not better and (
|
||||
self._search_states[self._best_estimator].sample_size ==
|
||||
self._state.data_size) and (est_retrain_time <=
|
||||
@@ -1151,7 +1199,11 @@ class AutoML:
|
||||
stacker = Stacker(estimators, best_m,
|
||||
n_jobs=self._state.n_jobs,
|
||||
passthrough=True)
|
||||
stacker.fit(self._X_train_all, self._y_train_all)
|
||||
if self._sample_weight_full is not None:
|
||||
self._state.fit_kwargs[
|
||||
'sample_weight'] = self._sample_weight_full
|
||||
stacker.fit(self._X_train_all, self._y_train_all,
|
||||
**self._state.fit_kwargs)
|
||||
logger.info(f'ensemble: {stacker}')
|
||||
self._trained_estimator = stacker
|
||||
self._trained_estimator.model = stacker
|
||||
@@ -1189,9 +1241,10 @@ class AutoML:
|
||||
gap = search_state.best_loss - self._state.best_loss
|
||||
if gap > 0 and not self._ensemble:
|
||||
delta_loss = (search_state.best_loss_old -
|
||||
search_state.best_loss)
|
||||
search_state.best_loss) or \
|
||||
search_state.best_loss
|
||||
delta_time = (search_state.total_time_used -
|
||||
search_state.time_best_found_old)
|
||||
search_state.time_best_found_old) or 1e-10
|
||||
speed = delta_loss / delta_time
|
||||
try:
|
||||
estimated_cost = 2*gap/speed
|
||||
|
||||
@@ -192,11 +192,13 @@ class DataTransformer:
|
||||
X = X.copy()
|
||||
n = X.shape[0]
|
||||
cat_columns, num_columns = [], []
|
||||
drop = False
|
||||
for column in X.columns:
|
||||
if X[column].dtype.name in ('object', 'category'):
|
||||
if X[column].nunique() == 1 or X[column].nunique(
|
||||
dropna=True) == n - X[column].isnull().sum():
|
||||
X.drop(columns=column, inplace=True)
|
||||
drop = True
|
||||
elif X[column].dtype.name == 'category':
|
||||
current_categories = X[column].cat.categories
|
||||
if '__NAN__' not in current_categories:
|
||||
@@ -204,27 +206,33 @@ class DataTransformer:
|
||||
'__NAN__').fillna('__NAN__')
|
||||
cat_columns.append(column)
|
||||
else:
|
||||
X[column].fillna('__NAN__', inplace=True)
|
||||
X[column] = X[column].fillna('__NAN__')
|
||||
cat_columns.append(column)
|
||||
else:
|
||||
# print(X[column].dtype.name)
|
||||
if X[column].nunique(dropna=True) < 2:
|
||||
X.drop(columns=column, inplace=True)
|
||||
drop = True
|
||||
else:
|
||||
X[column].fillna(np.nan, inplace=True)
|
||||
X[column] = X[column].fillna(np.nan)
|
||||
num_columns.append(column)
|
||||
X = X[cat_columns + num_columns]
|
||||
if cat_columns:
|
||||
X[cat_columns] = X[cat_columns].astype('category')
|
||||
if num_columns:
|
||||
X_num = X[num_columns]
|
||||
if drop and np.issubdtype(X_num.columns.dtype, np.integer):
|
||||
X_num.columns = range(X_num.shape[1])
|
||||
else: drop = False
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.compose import ColumnTransformer
|
||||
self.transformer = ColumnTransformer([(
|
||||
'continuous',
|
||||
SimpleImputer(missing_values=np.nan, strategy='median'),
|
||||
num_columns)])
|
||||
X[num_columns] = self.transformer.fit_transform(X)
|
||||
X_num.columns)])
|
||||
X[num_columns] = self.transformer.fit_transform(X_num)
|
||||
self._cat_columns, self._num_columns = cat_columns, num_columns
|
||||
self._drop = drop
|
||||
|
||||
if task == 'regression':
|
||||
self.label_transformer = None
|
||||
@@ -241,7 +249,7 @@ class DataTransformer:
|
||||
for column in cat_columns:
|
||||
# print(column, X[column].dtype.name)
|
||||
if X[column].dtype.name == 'object':
|
||||
X[column].fillna('__NAN__', inplace=True)
|
||||
X[column] = X[column].fillna('__NAN__')
|
||||
elif X[column].dtype.name == 'category':
|
||||
current_categories = X[column].cat.categories
|
||||
if '__NAN__' not in current_categories:
|
||||
@@ -250,6 +258,8 @@ class DataTransformer:
|
||||
if cat_columns:
|
||||
X[cat_columns] = X[cat_columns].astype('category')
|
||||
if num_columns:
|
||||
X[num_columns].fillna(np.nan, inplace=True)
|
||||
X[num_columns] = self.transformer.transform(X)
|
||||
X_num = X[num_columns].fillna(np.nan)
|
||||
if self._drop:
|
||||
X_num.columns = range(X_num.shape[1])
|
||||
X[num_columns] = self.transformer.transform(X_num)
|
||||
return X
|
||||
|
||||
@@ -239,11 +239,8 @@ class LGBMEstimator(BaseEstimator):
|
||||
else: objective = 'regression'
|
||||
self.params = {
|
||||
"n_estimators": int(round(n_estimators)),
|
||||
"num_leaves": params[
|
||||
'num_leaves'] if 'num_leaves' in params else int(
|
||||
round(max_leaves)),
|
||||
'objective': params[
|
||||
"objective"] if "objective" in params else objective,
|
||||
"num_leaves": params.get('num_leaves', int(round(max_leaves))),
|
||||
'objective': params.get("objective", objective),
|
||||
'n_jobs': n_jobs,
|
||||
'learning_rate': float(learning_rate),
|
||||
'reg_alpha': float(reg_alpha),
|
||||
@@ -359,18 +356,17 @@ class XGBoostEstimator(SKLearnEstimator):
|
||||
self._max_leaves = int(round(max_leaves))
|
||||
self.params = {
|
||||
'max_leaves': int(round(max_leaves)),
|
||||
'max_depth': 0,
|
||||
'grow_policy': params[
|
||||
"grow_policy"] if "grow_policy" in params else 'lossguide',
|
||||
'tree_method':tree_method,
|
||||
'verbosity': 0,
|
||||
'nthread':n_jobs,
|
||||
'max_depth': params.get('max_depth', 0),
|
||||
'grow_policy': params.get("grow_policy", 'lossguide'),
|
||||
'tree_method': tree_method,
|
||||
'verbosity': params.get('verbosity', 0),
|
||||
'nthread': n_jobs,
|
||||
'learning_rate': float(learning_rate),
|
||||
'subsample': float(subsample),
|
||||
'reg_alpha': float(reg_alpha),
|
||||
'reg_lambda': float(reg_lambda),
|
||||
'min_child_weight': float(min_child_weight),
|
||||
'booster': params['booster'] if 'booster' in params else 'gbtree',
|
||||
'booster': params.get('booster', 'gbtree'),
|
||||
'colsample_bylevel': float(colsample_bylevel),
|
||||
'colsample_bytree':float(colsample_bytree),
|
||||
}
|
||||
@@ -429,9 +425,8 @@ class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
|
||||
"n_estimators": int(round(n_estimators)),
|
||||
'max_leaves': int(round(max_leaves)),
|
||||
'max_depth': 0,
|
||||
'grow_policy': params[
|
||||
"grow_policy"] if "grow_policy" in params else 'lossguide',
|
||||
'tree_method':tree_method,
|
||||
'grow_policy': params.get("grow_policy", 'lossguide'),
|
||||
'tree_method': tree_method,
|
||||
'verbosity': 0,
|
||||
'n_jobs': n_jobs,
|
||||
'learning_rate': float(learning_rate),
|
||||
@@ -439,7 +434,7 @@ class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
|
||||
'reg_alpha': float(reg_alpha),
|
||||
'reg_lambda': float(reg_lambda),
|
||||
'min_child_weight': float(min_child_weight),
|
||||
'booster': params['booster'] if 'booster' in params else 'gbtree',
|
||||
'booster': params.get('booster', 'gbtree'),
|
||||
'colsample_bylevel': float(colsample_bylevel),
|
||||
'colsample_bytree': float(colsample_bytree),
|
||||
}
|
||||
@@ -544,10 +539,10 @@ class LRL1Classifier(SKLearnEstimator):
|
||||
**params):
|
||||
super().__init__(task, **params)
|
||||
self.params = {
|
||||
'penalty': 'l1',
|
||||
'penalty': params.get("penalty", 'l1'),
|
||||
'tol': float(tol),
|
||||
'C': float(C),
|
||||
'solver': 'saga',
|
||||
'solver': params.get("solver", 'saga'),
|
||||
'n_jobs': n_jobs,
|
||||
}
|
||||
if 'regression' in task:
|
||||
@@ -573,10 +568,10 @@ class LRL2Classifier(SKLearnEstimator):
|
||||
**params):
|
||||
super().__init__(task, **params)
|
||||
self.params = {
|
||||
'penalty': 'l2',
|
||||
'penalty': params.get("penalty", 'l2'),
|
||||
'tol': float(tol),
|
||||
'C': float(C),
|
||||
'solver': 'lbfgs',
|
||||
'solver': params.get("solver", 'lbfgs'),
|
||||
'n_jobs': n_jobs,
|
||||
}
|
||||
if 'regression' in task:
|
||||
@@ -625,9 +620,8 @@ class CatBoostEstimator(BaseEstimator):
|
||||
"n_estimators": n_estimators,
|
||||
'learning_rate': learning_rate,
|
||||
'thread_count': n_jobs,
|
||||
'verbose': False,
|
||||
'random_seed': params[
|
||||
"random_seed"] if "random_seed" in params else 10242048,
|
||||
'verbose': params.get('verbose', False),
|
||||
'random_seed': params.get("random_seed", 10242048),
|
||||
}
|
||||
if 'regression' in task:
|
||||
from catboost import CatBoostRegressor
|
||||
@@ -724,7 +718,7 @@ class KNeighborsEstimator(BaseEstimator):
|
||||
super().__init__(task, **params)
|
||||
self.params= {
|
||||
'n_neighbors': int(round(n_neighbors)),
|
||||
'weights': 'distance',
|
||||
'weights': params.get('weights', 'distance'),
|
||||
'n_jobs': n_jobs,
|
||||
}
|
||||
if 'regression' in task:
|
||||
|
||||
@@ -1,2 +1,2 @@
|
||||
from .blendsearch import CFO, BlendSearch
|
||||
from .blendsearch import CFO, BlendSearch, BlendSearchTuner
|
||||
from .flow2 import FLOW2
|
||||
@@ -7,6 +7,7 @@ from typing import Dict, Optional, List, Tuple
|
||||
import numpy as np
|
||||
import time
|
||||
import pickle
|
||||
|
||||
try:
|
||||
from ray.tune.suggest import Searcher
|
||||
from ray.tune.suggest.optuna import OptunaSearch as GlobalSearch
|
||||
@@ -25,6 +26,8 @@ class BlendSearch(Searcher):
|
||||
'''class for BlendSearch algorithm
|
||||
'''
|
||||
|
||||
cost_attr = "time_total_s" # cost attribute in result
|
||||
|
||||
def __init__(self,
|
||||
metric: Optional[str] = None,
|
||||
mode: Optional[str] = None,
|
||||
@@ -113,8 +116,9 @@ class BlendSearch(Searcher):
|
||||
self._deadline = config.get('time_budget_s') + time.time()
|
||||
if 'metric_target' in config:
|
||||
self._metric_target = config.get('metric_target')
|
||||
else:
|
||||
self._metric, self._mode = metric, mode
|
||||
else:
|
||||
if metric: self._metric = metric
|
||||
if mode: self._mode = mode
|
||||
self._ls.set_search_properties(metric, mode, config)
|
||||
if self._gs is not None:
|
||||
self._gs.set_search_properties(metric, mode, config)
|
||||
@@ -132,26 +136,39 @@ class BlendSearch(Searcher):
|
||||
self._thread_count = 1 # total # threads created
|
||||
self._init_used = self._ls.init_config is None
|
||||
self._trial_proposed_by = {} # trial_id: str -> thread_id: int
|
||||
self._admissible_min = self._ls.normalize(self._ls.init_config)
|
||||
self._admissible_max = self._admissible_min.copy()
|
||||
self._ls_bound_min = self._ls.normalize(self._ls.init_config)
|
||||
self._ls_bound_max = self._ls_bound_min.copy()
|
||||
self._gs_admissible_min = self._ls_bound_min.copy()
|
||||
self._gs_admissible_max = self._ls_bound_max.copy()
|
||||
self._result = {} # config_signature: tuple -> result: Dict
|
||||
self._deadline = np.inf
|
||||
|
||||
def save(self, checkpoint_path: str):
|
||||
save_object = (self._metric_target, self._search_thread_pool,
|
||||
self._thread_count, self._init_used, self._trial_proposed_by,
|
||||
self._admissible_min, self._admissible_max, self._result,
|
||||
self._deadline)
|
||||
save_object = self
|
||||
with open(checkpoint_path, "wb") as outputFile:
|
||||
pickle.dump(save_object, outputFile)
|
||||
|
||||
def restore(self, checkpoint_path: str):
|
||||
with open(checkpoint_path, "rb") as inputFile:
|
||||
save_object = pickle.load(inputFile)
|
||||
self._metric_target, self._search_thread_pool, \
|
||||
self._thread_count, self._init_used, self._trial_proposed_by, \
|
||||
self._admissible_min, self._admissible_max, self._result, \
|
||||
self._deadline = save_object
|
||||
state = pickle.load(inputFile)
|
||||
self._metric_target = state._metric_target
|
||||
self._search_thread_pool = state._search_thread_pool
|
||||
self._thread_count = state._thread_count
|
||||
self._init_used = state._init_used
|
||||
self._trial_proposed_by = state._trial_proposed_by
|
||||
self._ls_bound_min = state._ls_bound_min
|
||||
self._ls_bound_max = state._ls_bound_max
|
||||
self._gs_admissible_min = state._gs_admissible_min
|
||||
self._gs_admissible_max = state._gs_admissible_max
|
||||
self._result = state._result
|
||||
self._deadline = state._deadline
|
||||
self._metric, self._mode = state._metric, state._mode
|
||||
self._points_to_evaluate = state._points_to_evaluate
|
||||
self._gs = state._gs
|
||||
self._ls = state._ls
|
||||
self._resources_per_trial = state._resources_per_trial
|
||||
self._mem_size = state._mem_size
|
||||
self._mem_threshold = state._mem_threshold
|
||||
|
||||
def restore_from_dir(self, checkpoint_dir: str):
|
||||
super.restore_from_dir(checkpoint_dir)
|
||||
@@ -178,25 +195,20 @@ class BlendSearch(Searcher):
|
||||
# update target metric if improved
|
||||
if (result[self._metric]-self._metric_target)*self._ls.metric_op<0:
|
||||
self._metric_target = result[self._metric]
|
||||
if thread_id: # from local search
|
||||
# update admissible region
|
||||
normalized_config = self._ls.normalize(config)
|
||||
for key in self._admissible_min:
|
||||
value = normalized_config[key]
|
||||
if value > self._admissible_max[key]:
|
||||
self._admissible_max[key] = value
|
||||
elif value < self._admissible_min[key]:
|
||||
self._admissible_min[key] = value
|
||||
elif self._create_condition(result):
|
||||
if not thread_id and self._create_condition(result):
|
||||
# thread creator
|
||||
self._search_thread_pool[self._thread_count] = SearchThread(
|
||||
self._ls.mode,
|
||||
self._ls.create(config, result[self._metric], cost=result[
|
||||
"time_total_s"])
|
||||
self.cost_attr])
|
||||
)
|
||||
thread_id = self._thread_count
|
||||
self._thread_count += 1
|
||||
|
||||
self._update_admissible_region(config, self._ls_bound_min,
|
||||
self._ls_bound_max)
|
||||
# reset admissible region to ls bounding box
|
||||
self._gs_admissible_min.update(self._ls_bound_min)
|
||||
self._gs_admissible_max.update(self._ls_bound_max)
|
||||
# cleaner
|
||||
# logger.info(f"thread {thread_id} in search thread pool="
|
||||
# f"{thread_id in self._search_thread_pool}")
|
||||
@@ -204,6 +216,16 @@ class BlendSearch(Searcher):
|
||||
# local search thread
|
||||
self._clean(thread_id)
|
||||
|
||||
def _update_admissible_region(self, config, admissible_min, admissible_max):
|
||||
# update admissible region
|
||||
normalized_config = self._ls.normalize(config)
|
||||
for key in admissible_min:
|
||||
value = normalized_config[key]
|
||||
if value > admissible_max[key]:
|
||||
admissible_max[key] = value
|
||||
elif value < admissible_min[key]:
|
||||
admissible_min[key] = value
|
||||
|
||||
def _create_condition(self, result: Dict) -> bool:
|
||||
''' create thread condition
|
||||
'''
|
||||
@@ -231,9 +253,9 @@ class BlendSearch(Searcher):
|
||||
# f"{self._search_thread_pool[thread_id].converged}")
|
||||
if self._search_thread_pool[thread_id].converged:
|
||||
todelete.add(thread_id)
|
||||
for key in self._admissible_min:
|
||||
self._admissible_max[key] += self._ls.STEPSIZE
|
||||
self._admissible_min[key] -= self._ls.STEPSIZE
|
||||
for key in self._ls_bound_max:
|
||||
self._ls_bound_max[key] += self._ls.STEPSIZE
|
||||
self._ls_bound_min[key] -= self._ls.STEPSIZE
|
||||
for id in todelete:
|
||||
del self._search_thread_pool[id]
|
||||
|
||||
@@ -258,53 +280,67 @@ class BlendSearch(Searcher):
|
||||
'''
|
||||
if self._init_used and not self._points_to_evaluate:
|
||||
choice, backup = self._select_thread()
|
||||
# logger.debug(f"choice={choice}, backup={backup}")
|
||||
# print(f"choice={choice}, backup={backup}")
|
||||
if choice < 0: return None # timeout
|
||||
self._use_rs = False
|
||||
config = self._search_thread_pool[choice].suggest(trial_id)
|
||||
# preliminary check; not checking config validation
|
||||
skip = self._should_skip(choice, trial_id, config)
|
||||
if skip:
|
||||
if choice:
|
||||
# logger.info(f"skipping choice={choice}, config={config}")
|
||||
# print(f"skipping choice={choice}, config={config}")
|
||||
return None
|
||||
# use rs
|
||||
# use rs when BO fails to suggest a config
|
||||
self._use_rs = True
|
||||
for _, generated in generate_variants(
|
||||
{'config': self._ls.space}):
|
||||
config = generated['config']
|
||||
break
|
||||
break # get one random config
|
||||
# logger.debug(f"random config {config}")
|
||||
skip = self._should_skip(choice, trial_id, config)
|
||||
if skip: return None
|
||||
# if not choice: logger.info(config)
|
||||
if choice or backup == choice or self._valid(config):
|
||||
# if not choice: print(config)
|
||||
if choice or self._valid(config):
|
||||
# LS or valid or no backup choice
|
||||
self._trial_proposed_by[trial_id] = choice
|
||||
else: # invalid config proposed by GS
|
||||
if not self._use_rs:
|
||||
self._search_thread_pool[choice].on_trial_complete(
|
||||
trial_id, {}, error=True) # tell GS there is an error
|
||||
# if not self._use_rs:
|
||||
# self._search_thread_pool[choice].on_trial_complete(
|
||||
# trial_id, {}, error=True) # tell GS there is an error
|
||||
self._use_rs = False
|
||||
config = self._search_thread_pool[backup].suggest(trial_id)
|
||||
skip = self._should_skip(backup, trial_id, config)
|
||||
if skip:
|
||||
return None
|
||||
self._trial_proposed_by[trial_id] = backup
|
||||
choice = backup
|
||||
# if choice: self._pending.add(choice) # local search thread pending
|
||||
if not choice:
|
||||
if choice == backup:
|
||||
# use CFO's init point
|
||||
init_config = self._ls.init_config
|
||||
config = self._ls.complete_config(init_config,
|
||||
self._ls_bound_min, self._ls_bound_max)
|
||||
self._trial_proposed_by[trial_id] = choice
|
||||
else:
|
||||
config = self._search_thread_pool[backup].suggest(trial_id)
|
||||
skip = self._should_skip(backup, trial_id, config)
|
||||
if skip:
|
||||
return None
|
||||
self._trial_proposed_by[trial_id] = backup
|
||||
choice = backup
|
||||
if not choice: # global search
|
||||
if self._ls._resource:
|
||||
# TODO: add resource to config proposed by GS, min or median?
|
||||
config[self._ls.prune_attr] = self._ls.min_resource
|
||||
# temporarily relax admissible region for parallel proposals
|
||||
self._update_admissible_region(config, self._gs_admissible_min,
|
||||
self._gs_admissible_max)
|
||||
else:
|
||||
self._update_admissible_region(config, self._ls_bound_min,
|
||||
self._ls_bound_max)
|
||||
self._gs_admissible_min.update(self._ls_bound_min)
|
||||
self._gs_admissible_max.update(self._ls_bound_max)
|
||||
self._result[self._ls.config_signature(config)] = {}
|
||||
else: # use init config
|
||||
# print("use init config")
|
||||
init_config = self._points_to_evaluate.pop(
|
||||
0) if self._points_to_evaluate else self._ls.init_config
|
||||
if init_config==self._ls.init_config:
|
||||
config = self._ls.complete_config(init_config,
|
||||
self._admissible_min, self._admissible_max)
|
||||
config = self._ls.complete_config(init_config,
|
||||
self._ls_bound_min, self._ls_bound_max)
|
||||
# logger.info(f"reset config to {config}")
|
||||
else: config = init_config
|
||||
config_signature = self._ls.config_signature(config)
|
||||
result = self._result.get(config_signature)
|
||||
if result: # tried before
|
||||
@@ -340,10 +376,10 @@ class BlendSearch(Searcher):
|
||||
if choice:
|
||||
# local search thread
|
||||
self._clean(choice)
|
||||
else:
|
||||
# tell the thread there is an error
|
||||
self._search_thread_pool[choice].on_trial_complete(
|
||||
trial_id, {}, error=True)
|
||||
# else:
|
||||
# # tell the thread there is an error
|
||||
# self._search_thread_pool[choice].on_trial_complete(
|
||||
# trial_id, {}, error=True)
|
||||
return True
|
||||
return False
|
||||
|
||||
@@ -364,10 +400,10 @@ class BlendSearch(Searcher):
|
||||
|
||||
top_thread_id = backup_thread_id = 0
|
||||
priority1 = priority2 = self._search_thread_pool[0].priority
|
||||
# logger.debug(f"priority of thread 0={priority1}")
|
||||
# print(f"priority of thread 0={priority1}, obj_best1={self._search_thread_pool[0].obj_best1}")
|
||||
for thread_id, thread in self._search_thread_pool.items():
|
||||
# if thread_id:
|
||||
# logger.debug(
|
||||
# print(
|
||||
# f"priority of thread {thread_id}={thread.priority}")
|
||||
# logger.debug(
|
||||
# f"thread {thread_id}.can_suggest={thread.can_suggest}")
|
||||
@@ -384,18 +420,101 @@ class BlendSearch(Searcher):
|
||||
def _valid(self, config: Dict) -> bool:
|
||||
''' config validator
|
||||
'''
|
||||
for key in self._admissible_min:
|
||||
normalized_config = self._ls.normalize(config)
|
||||
for key in self._gs_admissible_min:
|
||||
if key in config:
|
||||
value = config[key]
|
||||
value = normalized_config[key]
|
||||
# logger.info(
|
||||
# f"{key},{value},{self._admissible_min[key]},{self._admissible_max[key]}")
|
||||
if value<self._admissible_min[
|
||||
key] or value>self._admissible_max[key]:
|
||||
if value+self._ls.STEPSIZE<self._gs_admissible_min[
|
||||
key] or value>self._gs_admissible_max[key]+self._ls.STEPSIZE:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class CFO(BlendSearch):
|
||||
try:
|
||||
from nni.tuner import Tuner as NNITuner
|
||||
from nni.utils import extract_scalar_reward
|
||||
try:
|
||||
from ray.tune import (uniform, quniform, choice, randint, qrandint, randn,
|
||||
qrandn, loguniform, qloguniform)
|
||||
except:
|
||||
from ..tune.sample import (uniform, quniform, choice, randint, qrandint, randn,
|
||||
qrandn, loguniform, qloguniform)
|
||||
|
||||
class BlendSearchTuner(BlendSearch, NNITuner):
|
||||
'''Tuner class for NNI
|
||||
'''
|
||||
|
||||
def receive_trial_result(self, parameter_id, parameters, value,
|
||||
**kwargs):
|
||||
'''
|
||||
Receive trial's final result.
|
||||
parameter_id: int
|
||||
parameters: object created by 'generate_parameters()'
|
||||
value: final metrics of the trial, including default metric
|
||||
'''
|
||||
result = {}
|
||||
for key, value in parameters.items():
|
||||
result['config/'+key] = value
|
||||
reward = extract_scalar_reward(value)
|
||||
result[self._metric] = reward
|
||||
# if nni does not report training cost,
|
||||
# using sequence as an approximation.
|
||||
# if no sequence, using a constant 1
|
||||
result[self.cost_attr] = value.get(self.cost_attr, value.get(
|
||||
'sequence', 1))
|
||||
self.on_trial_complete(str(parameter_id), result)
|
||||
...
|
||||
|
||||
def generate_parameters(self, parameter_id, **kwargs) -> Dict:
|
||||
'''
|
||||
Returns a set of trial (hyper-)parameters, as a serializable object
|
||||
parameter_id: int
|
||||
'''
|
||||
return self.suggest(str(parameter_id))
|
||||
...
|
||||
|
||||
def update_search_space(self, search_space):
|
||||
'''
|
||||
Tuners are advised to support updating search space at run-time.
|
||||
If a tuner can only set search space once before generating first hyper-parameters,
|
||||
it should explicitly document this behaviour.
|
||||
search_space: JSON object created by experiment owner
|
||||
'''
|
||||
config = {}
|
||||
for key, value in search_space.items():
|
||||
v = value.get("_value")
|
||||
_type = value['_type']
|
||||
if _type == 'choice':
|
||||
config[key] = choice(v)
|
||||
elif _type == 'randint':
|
||||
config[key] = randint(v[0], v[1]-1)
|
||||
elif _type == 'uniform':
|
||||
config[key] = uniform(v[0], v[1])
|
||||
elif _type == 'quniform':
|
||||
config[key] = quniform(v[0], v[1], v[2])
|
||||
elif _type == 'loguniform':
|
||||
config[key] = loguniform(v[0], v[1])
|
||||
elif _type == 'qloguniform':
|
||||
config[key] = qloguniform(v[0], v[1], v[2])
|
||||
elif _type == 'normal':
|
||||
config[key] = randn(v[1], v[2])
|
||||
elif _type == 'qnormal':
|
||||
config[key] = qrandn(v[1], v[2], v[3])
|
||||
else:
|
||||
raise ValueError(
|
||||
f'unsupported type in search_space {_type}')
|
||||
self._ls.set_search_properties(None, None, config)
|
||||
if self._gs is not None:
|
||||
self._gs.set_search_properties(None, None, config)
|
||||
self._init_search()
|
||||
|
||||
except:
|
||||
class BlendSearchTuner(BlendSearch): pass
|
||||
|
||||
|
||||
class CFO(BlendSearchTuner):
|
||||
''' class for CFO algorithm
|
||||
'''
|
||||
|
||||
@@ -418,3 +537,89 @@ class CFO(BlendSearch):
|
||||
''' create thread condition
|
||||
'''
|
||||
return len(self._search_thread_pool) < 2
|
||||
|
||||
|
||||
def create_next(client):
|
||||
'''A stateless API for HPO
|
||||
'''
|
||||
state = client.get_state()
|
||||
setting = client.get_settings_dict()
|
||||
if state is None:
|
||||
# first time call
|
||||
try:
|
||||
from ray.tune import (uniform, quniform, choice, randint, qrandint, randn,
|
||||
qrandn, loguniform, qloguniform)
|
||||
from ray.tune.trial import Trial
|
||||
except:
|
||||
from ..tune.sample import (uniform, quniform, choice, randint, qrandint, randn,
|
||||
qrandn, loguniform, qloguniform)
|
||||
from ..tune.trial import Trial
|
||||
method = setting.get('method', 'BlendSearch')
|
||||
mode = client.get_optimization_mode()
|
||||
if mode == 'minimize':
|
||||
mode = 'min'
|
||||
elif mode == 'maximize':
|
||||
mode = 'max'
|
||||
metric = client.get_primary_metric()
|
||||
hp_space = client.get_hyperparameter_space_dict()
|
||||
space = {}
|
||||
for key, value in hp_space.items():
|
||||
t = value["type"]
|
||||
if t == 'continuous':
|
||||
space[key] = uniform(value["min_val"], value["max_val"])
|
||||
elif t == 'discrete':
|
||||
space[key] = choice(value["values"])
|
||||
elif t == 'integral':
|
||||
space[key] = randint(value["min_val"], value["max_val"])
|
||||
elif t == 'quantized_continuous':
|
||||
space[key] = quniform(value["min_val"], value["max_val"],
|
||||
value["step"])
|
||||
init_config = setting.get('init_config', None)
|
||||
if init_config:
|
||||
points_to_evaluate = [init_config]
|
||||
else:
|
||||
points_to_evaluate = None
|
||||
cat_hp_cost = setting.get('cat_hp_cost', None)
|
||||
|
||||
if method == 'BlendSearch':
|
||||
Algo = BlendSearch
|
||||
elif method == 'CFO':
|
||||
Algo = CFO
|
||||
algo = Algo(
|
||||
mode=mode,
|
||||
metric=metric,
|
||||
space=space,
|
||||
points_to_evaluate=points_to_evaluate,
|
||||
cat_hp_cost=cat_hp_cost,
|
||||
)
|
||||
time_budget_s = setting.get('time_budget_s', None)
|
||||
if time_budget_s:
|
||||
algo._deadline = time_budget_s + time.time()
|
||||
config2trialid = {}
|
||||
else:
|
||||
algo = state['algo']
|
||||
config2trialid = state['config2trialid']
|
||||
# update finished trials
|
||||
trials_completed = []
|
||||
for trial in client.get_trials():
|
||||
if trial.end_time is not None:
|
||||
signature = algo._ls.config_signature(trial.hp_sample)
|
||||
if not algo._result[signature]:
|
||||
trials_completed.append((trial.end_time, trial))
|
||||
trials_completed.sort()
|
||||
for t in trials_completed:
|
||||
end_time, trial = t
|
||||
trial_id = config2trialid[trial.hp_sample]
|
||||
result = {}
|
||||
result[algo.metric] = trial.metrics[algo.metric].values[-1]
|
||||
result[algo.cost_attr] = (end_time - trial.start_time).total_seconds()
|
||||
for key, value in trial.hp_sample.items():
|
||||
result['config/'+key] = value
|
||||
algo.on_trial_complete(trial_id, result=result)
|
||||
# propose new trial
|
||||
trial_id = Trial.generate_id()
|
||||
config = algo.suggest(trial_id)
|
||||
if config:
|
||||
config2trialid[config] = trial_id
|
||||
client.launch_trial(config)
|
||||
client.update_state({'algo': algo, 'config2trialid': config2trialid})
|
||||
|
||||
@@ -9,9 +9,10 @@ try:
|
||||
from ray.tune.suggest import Searcher
|
||||
from ray.tune.suggest.variant_generator import generate_variants
|
||||
from ray.tune import sample
|
||||
from ray.tune.utils.util import flatten_dict, unflatten_dict
|
||||
except ImportError:
|
||||
from .suggestion import Searcher
|
||||
from .variant_generator import generate_variants
|
||||
from .variant_generator import generate_variants, flatten_dict, unflatten_dict
|
||||
from ..tune import sample
|
||||
|
||||
|
||||
@@ -86,6 +87,7 @@ class FLOW2(Searcher):
|
||||
elif mode == "min":
|
||||
self.metric_op = 1.
|
||||
self.space = space or {}
|
||||
self.space = flatten_dict(self.space, prevent_delimiter=True)
|
||||
self._random = np.random.RandomState(seed)
|
||||
self._seed = seed
|
||||
if not init_config:
|
||||
@@ -95,7 +97,8 @@ class FLOW2(Searcher):
|
||||
"consider providing init values for cost-related hps via "
|
||||
"'init_config'."
|
||||
)
|
||||
self.init_config = self.best_config = init_config
|
||||
self.init_config = init_config
|
||||
self.best_config = flatten_dict(init_config)
|
||||
self.cat_hp_cost = cat_hp_cost
|
||||
self.prune_attr = prune_attr
|
||||
self.min_resource = min_resource
|
||||
@@ -121,21 +124,21 @@ class FLOW2(Searcher):
|
||||
self._unordered_cat_hp = {}
|
||||
self._cat_hp_cost = {}
|
||||
for key, domain in self.space.items():
|
||||
assert not isinstance(domain, dict), \
|
||||
key+"'s domain is grid search which is not supported in FLOW2."
|
||||
assert not (isinstance(domain, dict) and 'grid_search' in domain
|
||||
), key+"'s domain is grid search which is not supported in FLOW2."
|
||||
if callable(getattr(domain, 'get_sampler', None)):
|
||||
self._tunable_keys.append(key)
|
||||
sampler = domain.get_sampler()
|
||||
if isinstance(sampler, sample.Quantized):
|
||||
sampler_inner = sampler.get_sampler()
|
||||
if str(sampler_inner) == 'Uniform':
|
||||
self._step_lb = min(
|
||||
self._step_lb, sampler.q/(domain.upper-domain.lower))
|
||||
elif isinstance(domain, sample.Integer) and str(
|
||||
sampler) == 'Uniform':
|
||||
self._step_lb = min(
|
||||
self._step_lb, 1.0/(domain.upper-domain.lower))
|
||||
elif isinstance(domain, sample.Categorical):
|
||||
# if isinstance(sampler, sample.Quantized):
|
||||
# sampler_inner = sampler.get_sampler()
|
||||
# if str(sampler_inner) == 'Uniform':
|
||||
# self._step_lb = min(
|
||||
# self._step_lb, sampler.q/(domain.upper-domain.lower))
|
||||
# elif isinstance(domain, sample.Integer) and str(
|
||||
# sampler) == 'Uniform':
|
||||
# self._step_lb = min(
|
||||
# self._step_lb, 1.0/(domain.upper-domain.lower))
|
||||
if isinstance(domain, sample.Categorical):
|
||||
cat_hp_cost = self.cat_hp_cost
|
||||
if cat_hp_cost and key in cat_hp_cost:
|
||||
cost = np.array(cat_hp_cost[key])
|
||||
@@ -146,7 +149,7 @@ class FLOW2(Searcher):
|
||||
for i, choice in enumerate(l):
|
||||
d[choice] = i
|
||||
self._ordered_cat_hp[key] = (l, d)
|
||||
self._step_lb = min(self._step_lb, 1.0/len(l))
|
||||
# self._step_lb = min(self._step_lb, 1.0/len(l))
|
||||
elif all(isinstance(x, int) or isinstance(x, float)
|
||||
for x in domain.categories):
|
||||
l = sorted(domain.categories)
|
||||
@@ -154,10 +157,10 @@ class FLOW2(Searcher):
|
||||
for i, choice in enumerate(l):
|
||||
d[choice] = i
|
||||
self._ordered_choice_hp[key] = (l, d)
|
||||
self._step_lb = min(self._step_lb, 1.0/len(l))
|
||||
# self._step_lb = min(self._step_lb, 1.0/len(l))
|
||||
else:
|
||||
self._unordered_cat_hp[key] = l = len(domain.categories)
|
||||
self._step_lb = min(self._step_lb, 1.0/l)
|
||||
# self._step_lb = min(self._step_lb, 1.0/l)
|
||||
if str(sampler) != 'Normal':
|
||||
self._bounded_keys.append(key)
|
||||
self._space_keys = list(self.space.keys())
|
||||
@@ -171,7 +174,7 @@ class FLOW2(Searcher):
|
||||
# logger.info(self._resource)
|
||||
else: self._resource = None
|
||||
self.incumbent = {}
|
||||
self.incumbent = self.normalize(self.init_config)
|
||||
self.incumbent = self.normalize(self.best_config) # flattened
|
||||
self.best_obj = self.cost_incumbent = None
|
||||
self.dim = len(self._tunable_keys) # total # tunable dimensions
|
||||
self._direction_tried = None
|
||||
@@ -190,6 +193,8 @@ class FLOW2(Searcher):
|
||||
self._K = 0
|
||||
self._iter_best_config = self.trial_count = 1
|
||||
self._reset_times = 0
|
||||
# record intermediate trial cost
|
||||
self._trial_cost = {}
|
||||
|
||||
@property
|
||||
def step_lower_bound(self) -> float:
|
||||
@@ -237,14 +242,15 @@ class FLOW2(Searcher):
|
||||
''' generate a complete config from the partial config input
|
||||
add minimal resource to config if available
|
||||
'''
|
||||
if self._reset_times: # not the first time, use random gaussian
|
||||
if self._reset_times and partial_config==self.init_config:
|
||||
# not the first time to complete init_config, use random gaussian
|
||||
normalized = self.normalize(partial_config)
|
||||
for key in normalized:
|
||||
# don't change unordered cat choice
|
||||
if key not in self._unordered_cat_hp:
|
||||
if upper and lower:
|
||||
u, l = upper[key], lower[key]
|
||||
gauss_std = u-l
|
||||
gauss_std = u-l or self.STEPSIZE
|
||||
# allowed bound
|
||||
u += self.STEPSIZE
|
||||
l -= self.STEPSIZE
|
||||
@@ -259,27 +265,28 @@ class FLOW2(Searcher):
|
||||
# use best config for unordered cat choice
|
||||
config = self.denormalize(normalized)
|
||||
else:
|
||||
# first time init_config, or other configs, take as is
|
||||
config = partial_config.copy()
|
||||
|
||||
if partial_config == self.init_config: self._reset_times += 1
|
||||
config = flatten_dict(config)
|
||||
for key, value in self.space.items():
|
||||
if key not in config:
|
||||
config[key] = value
|
||||
logger.debug(f'before random {config}')
|
||||
# logger.debug(f'before random {config}')
|
||||
for _, generated in generate_variants({'config': config}):
|
||||
config = generated['config']
|
||||
break
|
||||
logger.debug(f'after random {config}')
|
||||
# logger.debug(f'after random {config}')
|
||||
|
||||
if self._resource:
|
||||
config[self.prune_attr] = self.min_resource
|
||||
self._reset_times += 1
|
||||
return config
|
||||
return unflatten_dict(config)
|
||||
|
||||
def create(self, init_config: Dict, obj: float, cost: float) -> Searcher:
|
||||
flow2 = FLOW2(init_config, self.metric, self.mode, self._cat_hp_cost,
|
||||
self.space, self.prune_attr, self.min_resource,
|
||||
self.max_resource, self.resource_multiple_factor,
|
||||
self._seed+1)
|
||||
unflatten_dict(self.space), self.prune_attr,
|
||||
self.min_resource, self.max_resource,
|
||||
self.resource_multiple_factor, self._seed+1)
|
||||
flow2.best_obj = obj * self.metric_op # minimize internally
|
||||
flow2.cost_incumbent = cost
|
||||
return flow2
|
||||
@@ -288,7 +295,7 @@ class FLOW2(Searcher):
|
||||
''' normalize each dimension in config to [0,1]
|
||||
'''
|
||||
config_norm = {}
|
||||
for key, value in config.items():
|
||||
for key, value in flatten_dict(config).items():
|
||||
if key in self.space:
|
||||
# domain: sample.Categorical/Integer/Float/Function
|
||||
domain = self.space[key]
|
||||
@@ -299,10 +306,10 @@ class FLOW2(Searcher):
|
||||
# normalize categorical
|
||||
if key in self._ordered_cat_hp:
|
||||
l, d = self._ordered_cat_hp[key]
|
||||
config_norm[key] = d[value]/len(l)
|
||||
config_norm[key] = (d[value]+0.5)/len(l) # center
|
||||
elif key in self._ordered_choice_hp:
|
||||
l, d = self._ordered_choice_hp[key]
|
||||
config_norm[key] = d[value]/len(l)
|
||||
config_norm[key] = (d[value]+0.5)/len(l) # center
|
||||
elif key in self.incumbent:
|
||||
config_norm[key] = self.incumbent[
|
||||
key] if value == self.best_config[
|
||||
@@ -402,6 +409,7 @@ class FLOW2(Searcher):
|
||||
self._metric = metric
|
||||
if mode:
|
||||
assert mode in ["min", "max"], "`mode` must be 'min' or 'max'."
|
||||
self._mode = mode
|
||||
if mode == "max":
|
||||
self.metric_op = -1.
|
||||
elif mode == "min":
|
||||
@@ -422,7 +430,7 @@ class FLOW2(Searcher):
|
||||
obj = result.get(self._metric)
|
||||
if obj:
|
||||
obj *= self.metric_op
|
||||
if obj < self.best_obj:
|
||||
if self.best_obj is None or obj < self.best_obj:
|
||||
self.best_obj, self.best_config = obj, self._configs[
|
||||
trial_id]
|
||||
self.incumbent = self.normalize(self.best_config)
|
||||
@@ -433,7 +441,8 @@ class FLOW2(Searcher):
|
||||
self._cost_complete4incumbent = 0
|
||||
self._num_allowed4incumbent = 2 * self.dim
|
||||
self._proposed_by.clear()
|
||||
if self._K > 0:
|
||||
if self._K > 0:
|
||||
# self._oldK must have been set when self._K>0
|
||||
self.step *= np.sqrt(self._K/self._oldK)
|
||||
if self.step > self.step_ub: self.step = self.step_ub
|
||||
self._iter_best_config = self.trial_count
|
||||
@@ -442,7 +451,8 @@ class FLOW2(Searcher):
|
||||
if proposed_by == self.incumbent:
|
||||
# proposed by current incumbent and no better
|
||||
self._num_complete4incumbent += 1
|
||||
cost = result.get(self.cost_attr)
|
||||
cost = result.get(
|
||||
self.cost_attr) if result else self._trial_cost.get(trial_id)
|
||||
if cost: self._cost_complete4incumbent += cost
|
||||
if self._num_complete4incumbent >= 2*self.dim and \
|
||||
self._num_allowed4incumbent == 0:
|
||||
@@ -469,7 +479,7 @@ class FLOW2(Searcher):
|
||||
obj = result.get(self._metric)
|
||||
if obj:
|
||||
obj *= self.metric_op
|
||||
if obj < self.best_obj:
|
||||
if self.best_obj is None or obj < self.best_obj:
|
||||
self.best_obj = obj
|
||||
config = self._configs[trial_id]
|
||||
if self.best_config != config:
|
||||
@@ -483,6 +493,9 @@ class FLOW2(Searcher):
|
||||
self._num_allowed4incumbent = 2 * self.dim
|
||||
self._proposed_by.clear()
|
||||
self._iter_best_config = self.trial_count
|
||||
cost = result.get(self.cost_attr)
|
||||
# record the cost in case it is pruned and cost info is lost
|
||||
self._trial_cost[trial_id] = cost
|
||||
|
||||
def rand_vector_unit_sphere(self, dim) -> np.ndarray:
|
||||
vec = self._random.normal(0, 1, dim)
|
||||
@@ -520,12 +533,12 @@ class FLOW2(Searcher):
|
||||
self._direction_tried = self.rand_vector_unit_sphere(
|
||||
self.dim) * self.step
|
||||
for i, key in enumerate(self._tunable_keys):
|
||||
move[key] += self._direction_tried[i]
|
||||
move[key] += self._direction_tried[i]
|
||||
self._project(move)
|
||||
config = self.denormalize(move)
|
||||
self._proposed_by[trial_id] = self.incumbent
|
||||
self._configs[trial_id] = config
|
||||
return config
|
||||
return unflatten_dict(config)
|
||||
|
||||
def _project(self, config):
|
||||
''' project normalized config in the feasible region and set prune_attr
|
||||
@@ -545,6 +558,7 @@ class FLOW2(Searcher):
|
||||
def config_signature(self, config) -> tuple:
|
||||
''' return the signature tuple of a config
|
||||
'''
|
||||
config = flatten_dict(config)
|
||||
value_list = []
|
||||
for key in self._space_keys:
|
||||
if key in config:
|
||||
|
||||
@@ -20,12 +20,14 @@ class SearchThread:
|
||||
'''
|
||||
|
||||
cost_attr = 'time_total_s'
|
||||
eps = 1e-10
|
||||
|
||||
def __init__(self, mode: str = "min",
|
||||
search_alg: Optional[Searcher] = None):
|
||||
''' When search_alg is omitted, use local search FLOW2
|
||||
'''
|
||||
self._search_alg = search_alg
|
||||
self._is_ls = isinstance(search_alg, FLOW2)
|
||||
self._mode = mode
|
||||
self._metric_op = 1 if mode=='min' else -1
|
||||
self.cost_best = self.cost_last = self.cost_total = self.cost_best1 = \
|
||||
@@ -36,6 +38,7 @@ class SearchThread:
|
||||
# eci: expected cost for improvement
|
||||
self.eci = self.cost_best
|
||||
self.priority = self.speed = 0
|
||||
self._init_config = True
|
||||
|
||||
def suggest(self, trial_id: str) -> Optional[Dict]:
|
||||
''' use the suggest() of the underlying search algorithm
|
||||
@@ -70,7 +73,7 @@ class SearchThread:
|
||||
# calculate speed; use 0 for invalid speed temporarily
|
||||
if self.obj_best2 > self.obj_best1:
|
||||
self.speed = (self.obj_best2 - self.obj_best1) / (
|
||||
self.cost_total - self.cost_best2)
|
||||
self.cost_total - self.cost_best2 + self.eps)
|
||||
else: self.speed = 0
|
||||
|
||||
def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None,
|
||||
@@ -81,7 +84,12 @@ class SearchThread:
|
||||
if not hasattr(self._search_alg, '_ot_trials') or (not error and
|
||||
trial_id in self._search_alg._ot_trials):
|
||||
# optuna doesn't handle error
|
||||
self._search_alg.on_trial_complete(trial_id, result, error)
|
||||
if self._is_ls or not self._init_config:
|
||||
self._search_alg.on_trial_complete(trial_id, result, error)
|
||||
else:
|
||||
# init config is not proposed by self._search_alg
|
||||
# under this thread
|
||||
self._init_config = False
|
||||
if result:
|
||||
if self.cost_attr in result:
|
||||
self.cost_last = result[self.cost_attr]
|
||||
|
||||
@@ -28,6 +28,46 @@ from ..tune.sample import Categorical, Domain, Function
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def flatten_dict(dt, delimiter="/", prevent_delimiter=False):
|
||||
dt = copy.deepcopy(dt)
|
||||
if prevent_delimiter and any(delimiter in key for key in dt):
|
||||
# Raise if delimiter is any of the keys
|
||||
raise ValueError(
|
||||
"Found delimiter `{}` in key when trying to flatten array."
|
||||
"Please avoid using the delimiter in your specification.")
|
||||
while any(isinstance(v, dict) for v in dt.values()):
|
||||
remove = []
|
||||
add = {}
|
||||
for key, value in dt.items():
|
||||
if isinstance(value, dict):
|
||||
for subkey, v in value.items():
|
||||
if prevent_delimiter and delimiter in subkey:
|
||||
# Raise if delimiter is in any of the subkeys
|
||||
raise ValueError(
|
||||
"Found delimiter `{}` in key when trying to "
|
||||
"flatten array. Please avoid using the delimiter "
|
||||
"in your specification.")
|
||||
add[delimiter.join([key, str(subkey)])] = v
|
||||
remove.append(key)
|
||||
dt.update(add)
|
||||
for k in remove:
|
||||
del dt[k]
|
||||
return dt
|
||||
|
||||
|
||||
def unflatten_dict(dt, delimiter="/"):
|
||||
"""Unflatten dict. Does not support unflattening lists."""
|
||||
dict_type = type(dt)
|
||||
out = dict_type()
|
||||
for key, val in dt.items():
|
||||
path = key.split(delimiter)
|
||||
item = out
|
||||
for k in path[:-1]:
|
||||
item = item.setdefault(k, dict_type())
|
||||
item[path[-1]] = val
|
||||
return out
|
||||
|
||||
|
||||
class TuneError(Exception):
|
||||
"""General error class raised by ray.tune."""
|
||||
pass
|
||||
|
||||
@@ -118,6 +118,7 @@ class TrainingLogWriter(object):
|
||||
|
||||
def close(self):
|
||||
self.file.close()
|
||||
self.file = None # for pickle
|
||||
|
||||
|
||||
class TrainingLogReader(object):
|
||||
@@ -141,6 +142,7 @@ class TrainingLogReader(object):
|
||||
|
||||
def close(self):
|
||||
self.file.close()
|
||||
self.file = None # for pickle
|
||||
|
||||
def get_record(self, record_id) -> TrainingLogRecord:
|
||||
if self.file is None:
|
||||
|
||||
@@ -6,6 +6,7 @@ The API is compatible with ray tune.
|
||||
Example:
|
||||
|
||||
```python
|
||||
# require: pip install flaml[blendsearch]
|
||||
from flaml import tune
|
||||
import time
|
||||
|
||||
@@ -42,6 +43,7 @@ print(analysis.best_config) # the best config
|
||||
|
||||
Or, using ray tune's API:
|
||||
```python
|
||||
# require: pip install flaml[blendsearch] ray[tune]
|
||||
from ray import tune as raytune
|
||||
from flaml import CFO, BlendSearch
|
||||
import time
|
||||
@@ -146,6 +148,7 @@ based on optimism in face of uncertainty.
|
||||
Example:
|
||||
|
||||
```python
|
||||
# require: pip install flaml[blendsearch]
|
||||
from flaml import BlendSearch
|
||||
tune.run(...
|
||||
search_alg = BlendSearch(points_to_evaluate=[init_config]),
|
||||
@@ -156,6 +159,12 @@ Recommended scenario: cost-related hyperparameters exist, a low-cost
|
||||
initial point is known, and the search space is complex such that local search
|
||||
is prone to be stuck at local optima.
|
||||
|
||||
An example of using BlendSearch with NNI can be seen in [test](https://github.com/microsoft/FLAML/tree/main/test/nni), CFO can be used with NNI as well in a similar manner. To run the example, first make sure you have [NNI](https://nni.readthedocs.io/en/stable/) installed, then run:
|
||||
|
||||
```shell
|
||||
$nnictl create --config ./config.yml
|
||||
```
|
||||
|
||||
For more technical details, please check our papers.
|
||||
|
||||
* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.
|
||||
@@ -169,7 +178,7 @@ For more technical details, please check our papers.
|
||||
}
|
||||
```
|
||||
|
||||
* Economical Hyperparameter Optimization With Blended Search Strategy. Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
|
||||
* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
|
||||
|
||||
```
|
||||
@inproceedings{wang2021blendsearch,
|
||||
|
||||
@@ -17,6 +17,8 @@ logger = logging.getLogger(__name__)
|
||||
_use_ray = True
|
||||
_runner = None
|
||||
_verbose = 0
|
||||
_running_trial = None
|
||||
_training_iteration = 0
|
||||
|
||||
|
||||
class ExperimentAnalysis(EA):
|
||||
@@ -68,6 +70,8 @@ def report(_metric=None, **kwargs):
|
||||
'''
|
||||
global _use_ray
|
||||
global _verbose
|
||||
global _running_trial
|
||||
global _training_iteration
|
||||
if _use_ray:
|
||||
from ray import tune
|
||||
return tune.report(_metric, **kwargs)
|
||||
@@ -77,6 +81,12 @@ def report(_metric=None, **kwargs):
|
||||
logger.info(f"result: {kwargs}")
|
||||
if _metric: result['_default_anonymous_metric'] = _metric
|
||||
trial = _runner.running_trial
|
||||
if _running_trial == trial:
|
||||
_training_iteration += 1
|
||||
else:
|
||||
_training_iteration = 0
|
||||
_running_trial = trial
|
||||
result["training_iteration"] = _training_iteration
|
||||
result['config'] = trial.config
|
||||
for key, value in trial.config.items():
|
||||
result['config/'+key] = value
|
||||
@@ -195,7 +205,7 @@ def run(training_function,
|
||||
0 = silent, 1 = only status updates, 2 = status and brief trial
|
||||
results, 3 = status and detailed trial results. Defaults to 2.
|
||||
local_dir: A string of the local dir to save ray logs if ray backend is
|
||||
used.
|
||||
used; or a local dir to save the tuning log.
|
||||
num_samples: An integer of the number of configs to try. Defaults to 1.
|
||||
resources_per_trial: A dictionary of the hardware resources to allocate
|
||||
per trial, e.g., `{'mem': 1024**3}`. When not using ray backend,
|
||||
@@ -211,9 +221,18 @@ def run(training_function,
|
||||
_verbose = verbose
|
||||
if verbose > 0:
|
||||
import os
|
||||
os.makedirs(local_dir, exist_ok=True)
|
||||
logger.addHandler(logging.FileHandler(local_dir+'/tune_'+str(
|
||||
datetime.datetime.now())+'.log'))
|
||||
if local_dir:
|
||||
os.makedirs(local_dir, exist_ok=True)
|
||||
logger.addHandler(logging.FileHandler(local_dir+'/tune_'+str(
|
||||
datetime.datetime.now()).replace(':', '-')+'.log'))
|
||||
elif not logger.handlers:
|
||||
# Add the console handler.
|
||||
_ch = logging.StreamHandler()
|
||||
logger_formatter = logging.Formatter(
|
||||
'[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s',
|
||||
'%m-%d %H:%M:%S')
|
||||
_ch.setFormatter(logger_formatter)
|
||||
logger.addHandler(_ch)
|
||||
if verbose<=2:
|
||||
logger.setLevel(logging.INFO)
|
||||
else:
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = "0.2.3"
|
||||
__version__ = "0.2.9"
|
||||
|
||||
@@ -1,788 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook uses the Huggingface transformers library to finetune a transformer model.\n",
|
||||
"\n",
|
||||
"**Requirements.** This notebook has additional requirements:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install -r transformers_requirements.txt\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tokenizer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from transformers import AutoTokenizer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"MODEL_CHECKPOINT = \"distilbert-base-uncased\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input_ids': [101, 2023, 2003, 1037, 3231, 102], 'attention_mask': [1, 1, 1, 1, 1, 1]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer(\"this is a test\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"TASK = \"cola\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import datasets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Reusing dataset glue (/home/amin/.cache/huggingface/datasets/glue/cola/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4)\n",
|
||||
"/home/amin/miniconda/lib/python3.7/site-packages/torch/cuda/__init__.py:52: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)\n",
|
||||
" return torch._C._cuda_getDeviceCount() > 0\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"raw_dataset = datasets.load_dataset(\"glue\", TASK)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# define tokenization function used to process data\n",
|
||||
"COLUMN_NAME = \"sentence\"\n",
|
||||
"def tokenize(examples):\n",
|
||||
" return tokenizer(examples[COLUMN_NAME], truncation=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "5bd7b23a478043eaaf6e14e119143fcd",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"HBox(children=(FloatProgress(value=0.0, max=9.0), HTML(value='')))"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "d7b648c2dbdc4fb9907e43da7db8af9a",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "36a9d6e62dbe462d94b1769f36fbd0f3",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"encoded_dataset = raw_dataset.map(tokenize, batched=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
|
||||
" 'idx': 0,\n",
|
||||
" 'input_ids': [101,\n",
|
||||
" 2256,\n",
|
||||
" 2814,\n",
|
||||
" 2180,\n",
|
||||
" 1005,\n",
|
||||
" 1056,\n",
|
||||
" 4965,\n",
|
||||
" 2023,\n",
|
||||
" 4106,\n",
|
||||
" 1010,\n",
|
||||
" 2292,\n",
|
||||
" 2894,\n",
|
||||
" 1996,\n",
|
||||
" 2279,\n",
|
||||
" 2028,\n",
|
||||
" 2057,\n",
|
||||
" 16599,\n",
|
||||
" 1012,\n",
|
||||
" 102],\n",
|
||||
" 'label': 1,\n",
|
||||
" 'sentence': \"Our friends won't buy this analysis, let alone the next one we propose.\"}"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"encoded_dataset[\"train\"][0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from transformers import AutoModelForSequenceClassification"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "35b76e51b5c8406fae416fcdc3dd885e",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=267967963.0, style=ProgressStyle(descri…"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_transform.bias', 'vocab_layer_norm.weight', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias']\n",
|
||||
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n",
|
||||
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
||||
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'pre_classifier.bias', 'classifier.weight', 'classifier.bias']\n",
|
||||
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"NUM_LABELS = 2\n",
|
||||
"model = AutoModelForSequenceClassification.from_pretrained(MODEL_CHECKPOINT, num_labels=NUM_LABELS)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"DistilBertForSequenceClassification(\n",
|
||||
" (distilbert): DistilBertModel(\n",
|
||||
" (embeddings): Embeddings(\n",
|
||||
" (word_embeddings): Embedding(30522, 768, padding_idx=0)\n",
|
||||
" (position_embeddings): Embedding(512, 768)\n",
|
||||
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" )\n",
|
||||
" (transformer): Transformer(\n",
|
||||
" (layer): ModuleList(\n",
|
||||
" (0): TransformerBlock(\n",
|
||||
" (attention): MultiHeadSelfAttention(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" (ffn): FFN(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
|
||||
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" )\n",
|
||||
" (1): TransformerBlock(\n",
|
||||
" (attention): MultiHeadSelfAttention(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" (ffn): FFN(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
|
||||
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" )\n",
|
||||
" (2): TransformerBlock(\n",
|
||||
" (attention): MultiHeadSelfAttention(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" (ffn): FFN(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
|
||||
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" )\n",
|
||||
" (3): TransformerBlock(\n",
|
||||
" (attention): MultiHeadSelfAttention(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" (ffn): FFN(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
|
||||
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" )\n",
|
||||
" (4): TransformerBlock(\n",
|
||||
" (attention): MultiHeadSelfAttention(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" (ffn): FFN(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
|
||||
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" )\n",
|
||||
" (5): TransformerBlock(\n",
|
||||
" (attention): MultiHeadSelfAttention(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" (ffn): FFN(\n",
|
||||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||||
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
|
||||
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
|
||||
" )\n",
|
||||
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" (pre_classifier): Linear(in_features=768, out_features=768, bias=True)\n",
|
||||
" (classifier): Linear(in_features=768, out_features=2, bias=True)\n",
|
||||
" (dropout): Dropout(p=0.2, inplace=False)\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Metric"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"metric = datasets.load_metric(\"glue\", TASK)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Metric(name: \"glue\", features: {'predictions': Value(dtype='int64', id=None), 'references': Value(dtype='int64', id=None)}, usage: \"\"\"\n",
|
||||
"Compute GLUE evaluation metric associated to each GLUE dataset.\n",
|
||||
"Args:\n",
|
||||
" predictions: list of translations to score.\n",
|
||||
" Each translation should be tokenized into a list of tokens.\n",
|
||||
" references: list of lists of references for each translation.\n",
|
||||
" Each reference should be tokenized into a list of tokens.\n",
|
||||
"Returns: depending on the GLUE subset, one or several of:\n",
|
||||
" \"accuracy\": Accuracy\n",
|
||||
" \"f1\": F1\n",
|
||||
" \"pearson\": Pearson Correlation\n",
|
||||
" \"spearmanr\": Spearman Correlation\n",
|
||||
" \"matthews_correlation\": Matthew Correlation\n",
|
||||
"\"\"\", stored examples: 0)"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"metric"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def compute_metrics(eval_pred):\n",
|
||||
" predictions, labels = eval_pred\n",
|
||||
" predictions = np.argmax(predictions, axis=1)\n",
|
||||
" return metric.compute(predictions=predictions, references=labels)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Training (aka Finetuning)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from transformers import Trainer\n",
|
||||
"from transformers import TrainingArguments"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"args = TrainingArguments(\n",
|
||||
" output_dir='output',\n",
|
||||
" do_eval=True,\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"trainer = Trainer(\n",
|
||||
" model=model,\n",
|
||||
" args=args,\n",
|
||||
" train_dataset=encoded_dataset[\"train\"],\n",
|
||||
" eval_dataset=encoded_dataset[\"validation\"],\n",
|
||||
" tokenizer=tokenizer,\n",
|
||||
" compute_metrics=compute_metrics,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"\n",
|
||||
" <div>\n",
|
||||
" <style>\n",
|
||||
" /* Turns off some styling */\n",
|
||||
" progress {\n",
|
||||
" /* gets rid of default border in Firefox and Opera. */\n",
|
||||
" border: none;\n",
|
||||
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
|
||||
" background-size: auto;\n",
|
||||
" }\n",
|
||||
" </style>\n",
|
||||
" \n",
|
||||
" <progress value='322' max='3207' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
||||
" [ 322/3207 02:51 < 25:41, 1.87 it/s, Epoch 0.30/3]\n",
|
||||
" </div>\n",
|
||||
" <table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: left;\">\n",
|
||||
" <th>Step</th>\n",
|
||||
" <th>Training Loss</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" </tbody>\n",
|
||||
"</table><p>"
|
||||
],
|
||||
"text/plain": [
|
||||
"<IPython.core.display.HTML object>"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"trainer.train()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"## Hyperparameter Optimization\n",
|
||||
"\n",
|
||||
"`flaml.tune` is a module for economical hyperparameter tuning. It frees users from manually tuning many hyperparameters for a software, such as machine learning training procedures. \n",
|
||||
"The API is compatible with ray tune.\n",
|
||||
"\n",
|
||||
"### Step 1. Define training method\n",
|
||||
"\n",
|
||||
"We define a function `train_distilbert(config: dict)` that accepts a hyperparameter configuration dict `config`. The specific configs will be generated by flaml's search algorithm in a given search space.\n"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import flaml\n",
|
||||
"\n",
|
||||
"def train_distilbert(config: dict):\n",
|
||||
"\n",
|
||||
" # Define tokenize method\n",
|
||||
" tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)\n",
|
||||
" def tokenize(examples):\n",
|
||||
" return tokenizer(examples[COLUMN_NAME], truncation=True)\n",
|
||||
" # Load CoLA dataset and apply tokenizer\n",
|
||||
" cola_raw = load_dataset(\"glue\", TASK)\n",
|
||||
" cola_encoded = cola_raw.map(tokenize, batched=True)\n",
|
||||
" # QUESTION: Write processed data to disk?\n",
|
||||
" train_dataset, eval_dataset = cola_encoded[\"train\"], cola_encoded[\"validation\"]\n",
|
||||
"\n",
|
||||
" model = AutoModelForSequenceClassification.from_pretrained(\n",
|
||||
" MODEL_CHECKPOINT, num_labels=NUM_LABELS\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" metric = load_metric(\"glue\", TASK)\n",
|
||||
"\n",
|
||||
" training_args = TrainingArguments(\n",
|
||||
" output_dir='.',\n",
|
||||
" do_eval=False,\n",
|
||||
" **config,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" trainer = Trainer(\n",
|
||||
" model,\n",
|
||||
" training_args,\n",
|
||||
" train_dataset=train_dataset,\n",
|
||||
" eval_dataset=eval_dataset,\n",
|
||||
" tokenizer=tokenizer,\n",
|
||||
" compute_metrics=compute_metrics,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # train model\n",
|
||||
" trainer.train()\n",
|
||||
"\n",
|
||||
" # evaluate model\n",
|
||||
" eval_output = trainer.evaluate()\n",
|
||||
"\n",
|
||||
" # report the metric to optimize\n",
|
||||
" flaml.tune.report(\n",
|
||||
" loss=eval_output[\"eval_loss\"],\n",
|
||||
" matthews_correlation=eval_output[\"eval_matthews_correlation\"],\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"### Step 2. Define the search\n",
|
||||
"\n",
|
||||
"We are now ready to define our search. This includes:\n",
|
||||
"\n",
|
||||
"- The `search_space` for our hyperparameters\n",
|
||||
"- The metric and the mode ('max' or 'min') for optimization\n",
|
||||
"- The constraints (`n_cpus`, `n_gpus`, `num_samples`, and `time_budget_s`)"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"max_num_epoch = 4\n",
|
||||
"search_space = {\n",
|
||||
" # You can mix constants with search space objects.\n",
|
||||
" \"num_train_epochs\": flaml.tune.loguniform(1, max_num_epoch),\n",
|
||||
" \"learning_rate\": flaml.tune.loguniform(1e-6, 1e-4),\n",
|
||||
" \"adam_epsilon\": flaml.tune.loguniform(1e-9, 1e-7),\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# optimization objective\n",
|
||||
"HP_METRIC, MODE = \"matthews_correlation\", \"max\"\n",
|
||||
"\n",
|
||||
"# resources\n",
|
||||
"num_cpus = 2\n",
|
||||
"num_gpus = 2\n",
|
||||
"\n",
|
||||
"# constraints\n",
|
||||
"num_samples = -1 # number of trials, -1 means unlimited\n",
|
||||
"time_budget_s = 3600 # time budget in seconds"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"### Step 3. Launch with `flaml.tune.run`\n",
|
||||
"\n",
|
||||
"We are now ready to laungh the tuning using `flaml.tune.run`:"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"import ray\n",
|
||||
"start_time = time.time()\n",
|
||||
"ray.init(num_cpus=num_cpus, num_gpus=num_gpus)\n",
|
||||
"\n",
|
||||
"print(\"Tuning started...\")\n",
|
||||
"analysis = flaml.tune.run(\n",
|
||||
" train_distilbert,\n",
|
||||
" config=search_space,\n",
|
||||
" init_config={\n",
|
||||
" \"num_train_epochs\": 1,\n",
|
||||
" },\n",
|
||||
" metric=HP_METRIC,\n",
|
||||
" mode=MODE,\n",
|
||||
" report_intermediate_result=False,\n",
|
||||
" # uncomment the following if report_intermediate_result = True\n",
|
||||
" # max_resource=max_num_epoch, min_resource=1,\n",
|
||||
" resources_per_trial={\"gpu\": 1},\n",
|
||||
" local_dir='logs/',\n",
|
||||
" num_samples=num_samples,\n",
|
||||
" time_budget_s=time_budget_s,\n",
|
||||
" use_ray=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"ray.shutdown()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_trial = analysis.get_best_trial(HP_METRIC, MODE, \"all\")\n",
|
||||
"metric = best_trial.metric_analysis[HP_METRIC][MODE]\n",
|
||||
"print(f\"n_trials={len(analysis.trials)}\")\n",
|
||||
"print(f\"time={time.time()-start_time}\")\n",
|
||||
"print(f\"Best model eval {HP_METRIC}: {metric:.4f}\")\n",
|
||||
"print(f\"Best model parameters: {best_trial.config}\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"## Next Steps\n",
|
||||
"\n",
|
||||
"Notice that we only reported the metric with `flaml.tune.report` at the end of full training loop. It is possible to enable reporting of intermediate performance - allowing early stopping - as follows:\n",
|
||||
"\n",
|
||||
"- Huggingface provides _Callbacks_ which can be used to insert the `flaml.tune.report` call inside the training loop\n",
|
||||
"- Make sure to set `do_eval=True` in the `TrainingArguments` provided to `Trainer` and adjust theevaluation frequency accordingly"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "flaml",
|
||||
"language": "python",
|
||||
"name": "flaml"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
969
notebook/flaml_automl.ipynb
Normal file
969
notebook/flaml_automl.ipynb
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
1216
notebook/flaml_finetune_transformer.ipynb
Normal file
1216
notebook/flaml_finetune_transformer.ipynb
Normal file
File diff suppressed because one or more lines are too long
649
notebook/flaml_lightgbm.ipynb
Normal file
649
notebook/flaml_lightgbm.ipynb
Normal file
File diff suppressed because one or more lines are too long
556
notebook/flaml_xgboost.ipynb
Normal file
556
notebook/flaml_xgboost.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -1,4 +0,0 @@
|
||||
torch
|
||||
transformers
|
||||
datasets
|
||||
ipywidgets
|
||||
12
setup.py
12
setup.py
@@ -20,7 +20,6 @@ install_requires = [
|
||||
"scipy>=1.4.1",
|
||||
"catboost>=0.23",
|
||||
"scikit-learn>=0.23.2",
|
||||
"optuna==2.3.0"
|
||||
],
|
||||
|
||||
|
||||
@@ -48,14 +47,21 @@ setuptools.setup(
|
||||
"coverage>=5.3",
|
||||
"xgboost<1.3",
|
||||
"rgf-python",
|
||||
"optuna==2.3.0",
|
||||
],
|
||||
"blendsearch": [
|
||||
"optuna==2.3.0"
|
||||
],
|
||||
"ray": [
|
||||
"ray[tune]==1.1.0",
|
||||
"ray[tune]==1.2.0",
|
||||
"pyyaml<5.3.1",
|
||||
],
|
||||
"azureml": [
|
||||
"azureml-mlflow"
|
||||
"azureml-mlflow",
|
||||
],
|
||||
"nni": [
|
||||
"nni",
|
||||
]
|
||||
},
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
|
||||
250
test/hf/test_deberta.py
Normal file
250
test/hf/test_deberta.py
Normal file
@@ -0,0 +1,250 @@
|
||||
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
|
||||
'''
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
import ray
|
||||
from datasets import (
|
||||
load_dataset,
|
||||
load_metric,
|
||||
)
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
)
|
||||
MODEL_CHECKPOINT = "microsoft/deberta-base"
|
||||
task_to_keys = {
|
||||
"cola": ("sentence", None),
|
||||
"mnli": ("premise", "hypothesis"),
|
||||
"mrpc": ("sentence1", "sentence2"),
|
||||
"qnli": ("question", "sentence"),
|
||||
"qqp": ("question1", "question2"),
|
||||
"rte": ("sentence1", "sentence2"),
|
||||
"sst2": ("sentence", None),
|
||||
"stsb": ("sentence1", "sentence2"),
|
||||
"wnli": ("sentence1", "sentence2"),
|
||||
}
|
||||
max_seq_length=128
|
||||
overwrite_cache=False
|
||||
pad_to_max_length=True
|
||||
padding = "max_length"
|
||||
|
||||
TASK = "qnli"
|
||||
# HP_METRIC, MODE = "loss", "min"
|
||||
HP_METRIC, MODE = "accuracy", "max"
|
||||
|
||||
sentence1_key, sentence2_key = task_to_keys[TASK]
|
||||
# Define tokenize method
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
|
||||
|
||||
def tokenize(examples):
|
||||
args = (
|
||||
(examples[sentence1_key],) if sentence2_key is None else (
|
||||
examples[sentence1_key], examples[sentence2_key])
|
||||
)
|
||||
return tokenizer(*args, padding=padding, max_length=max_seq_length,
|
||||
truncation=True)
|
||||
|
||||
except:
|
||||
print("pip install torch transformers datasets flaml[blendsearch,ray]")
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
import os
|
||||
os.makedirs('logs', exist_ok=True)
|
||||
logger.addHandler(logging.FileHandler('logs/tune_deberta.log'))
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
import flaml
|
||||
|
||||
def train_deberta(config: dict):
|
||||
|
||||
# Load dataset and apply tokenizer
|
||||
data_raw = load_dataset("glue", TASK)
|
||||
data_encoded = data_raw.map(tokenize, batched=True)
|
||||
train_dataset, eval_dataset = data_encoded["train"], data_encoded["validation"]
|
||||
|
||||
NUM_LABELS = len(train_dataset.features["label"].names)
|
||||
|
||||
metric = load_metric("glue", TASK)
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
predictions, labels = eval_pred
|
||||
predictions = np.argmax(predictions, axis=1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
MODEL_CHECKPOINT, num_labels=NUM_LABELS
|
||||
)
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir='.',
|
||||
do_eval=False,
|
||||
disable_tqdm=True,
|
||||
logging_steps=20000,
|
||||
save_total_limit=0,
|
||||
fp16=True,
|
||||
**config,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# train model
|
||||
trainer.train()
|
||||
|
||||
# evaluate model
|
||||
eval_output = trainer.evaluate()
|
||||
|
||||
flaml.tune.report(
|
||||
loss=eval_output["eval_loss"],
|
||||
accuracy=eval_output["eval_accuracy"],
|
||||
)
|
||||
|
||||
try:
|
||||
from azureml.core import Run
|
||||
run = Run.get_context()
|
||||
run.log('accuracy', eval_output["eval_accuracy"])
|
||||
run.log('loss', eval_output["eval_loss"])
|
||||
run.log('config', config)
|
||||
except: pass
|
||||
|
||||
def _test_deberta(method='BlendSearch'):
|
||||
|
||||
max_num_epoch = 100
|
||||
num_samples = -1
|
||||
time_budget_s = 3600
|
||||
|
||||
search_space = {
|
||||
# You can mix constants with search space objects.
|
||||
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
|
||||
"learning_rate": flaml.tune.loguniform(3e-5, 1.5e-4),
|
||||
"weight_decay": flaml.tune.uniform(0, 0.3),
|
||||
"per_device_train_batch_size": flaml.tune.choice([16, 32, 64, 128]),
|
||||
"seed": flaml.tune.choice([12, 22, 33, 42]),
|
||||
}
|
||||
|
||||
start_time = time.time()
|
||||
ray.init(num_cpus=4, num_gpus=4)
|
||||
if 'ASHA' == method:
|
||||
algo = None
|
||||
elif 'BOHB' == method:
|
||||
from ray.tune.schedulers import HyperBandForBOHB
|
||||
from ray.tune.suggest.bohb import tuneBOHB
|
||||
algo = tuneBOHB(max_concurrent=4)
|
||||
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
|
||||
elif 'Optuna' == method:
|
||||
from ray.tune.suggest.optuna import OptunaSearch
|
||||
algo = OptunaSearch()
|
||||
elif 'CFO' == method:
|
||||
from flaml import CFO
|
||||
algo = CFO(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
"per_device_train_batch_size": 128,
|
||||
}])
|
||||
elif 'BlendSearch' == method:
|
||||
from flaml import BlendSearch
|
||||
algo = BlendSearch(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
"per_device_train_batch_size": 128,
|
||||
}])
|
||||
elif 'Dragonfly' == method:
|
||||
from ray.tune.suggest.dragonfly import DragonflySearch
|
||||
algo = DragonflySearch()
|
||||
elif 'SkOpt' == method:
|
||||
from ray.tune.suggest.skopt import SkOptSearch
|
||||
algo = SkOptSearch()
|
||||
elif 'Nevergrad' == method:
|
||||
from ray.tune.suggest.nevergrad import NevergradSearch
|
||||
import nevergrad as ng
|
||||
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
|
||||
elif 'ZOOpt' == method:
|
||||
from ray.tune.suggest.zoopt import ZOOptSearch
|
||||
algo = ZOOptSearch(budget=num_samples)
|
||||
elif 'Ax' == method:
|
||||
from ray.tune.suggest.ax import AxSearch
|
||||
algo = AxSearch(max_concurrent=3)
|
||||
elif 'HyperOpt' == method:
|
||||
from ray.tune.suggest.hyperopt import HyperOptSearch
|
||||
algo = HyperOptSearch()
|
||||
scheduler = None
|
||||
if method != 'BOHB':
|
||||
from ray.tune.schedulers import ASHAScheduler
|
||||
scheduler = ASHAScheduler(
|
||||
max_t=max_num_epoch,
|
||||
grace_period=1)
|
||||
scheduler = None
|
||||
analysis = ray.tune.run(
|
||||
train_deberta,
|
||||
metric=HP_METRIC,
|
||||
mode=MODE,
|
||||
resources_per_trial={"gpu": 4, "cpu": 4},
|
||||
config=search_space, local_dir='logs/',
|
||||
num_samples=num_samples, time_budget_s=time_budget_s,
|
||||
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
|
||||
scheduler=scheduler, search_alg=algo)
|
||||
|
||||
ray.shutdown()
|
||||
|
||||
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
|
||||
metric = best_trial.metric_analysis[HP_METRIC][MODE]
|
||||
|
||||
logger.info(f"method={method}")
|
||||
logger.info(f"n_trials={len(analysis.trials)}")
|
||||
logger.info(f"time={time.time()-start_time}")
|
||||
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
|
||||
logger.info(f"Best model parameters: {best_trial.config}")
|
||||
|
||||
|
||||
def _test_deberta_cfo():
|
||||
_test_deberta('CFO')
|
||||
|
||||
|
||||
def _test_deberta_dragonfly():
|
||||
_test_deberta('Dragonfly')
|
||||
|
||||
|
||||
def _test_deberta_skopt():
|
||||
_test_deberta('SkOpt')
|
||||
|
||||
|
||||
def _test_deberta_nevergrad():
|
||||
_test_deberta('Nevergrad')
|
||||
|
||||
|
||||
def _test_deberta_zoopt():
|
||||
_test_deberta('ZOOpt')
|
||||
|
||||
|
||||
def _test_deberta_ax():
|
||||
_test_deberta('Ax')
|
||||
|
||||
|
||||
def __test_deberta_hyperopt():
|
||||
_test_deberta('HyperOpt')
|
||||
|
||||
|
||||
def _test_deberta_optuna():
|
||||
_test_deberta('Optuna')
|
||||
|
||||
|
||||
def _test_deberta_asha():
|
||||
_test_deberta('ASHA')
|
||||
|
||||
|
||||
def _test_deberta_bohb():
|
||||
_test_deberta('BOHB')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_deberta()
|
||||
219
test/hf/test_distillbert.py
Normal file
219
test/hf/test_distillbert.py
Normal file
@@ -0,0 +1,219 @@
|
||||
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
|
||||
'''
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
import ray
|
||||
from datasets import (
|
||||
load_dataset,
|
||||
load_metric,
|
||||
)
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
)
|
||||
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
||||
TASK = "cola"
|
||||
NUM_LABELS = 2
|
||||
COLUMN_NAME = "sentence"
|
||||
METRIC_NAME = "matthews_correlation"
|
||||
|
||||
# HP_METRIC, MODE = "loss", "min"
|
||||
HP_METRIC, MODE = "matthews_correlation", "max"
|
||||
|
||||
# Define tokenize method
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
|
||||
def tokenize(examples):
|
||||
return tokenizer(examples[COLUMN_NAME], truncation=True)
|
||||
|
||||
except:
|
||||
print("pip install torch transformers datasets flaml[blendsearch,ray]")
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
import os
|
||||
os.makedirs('logs', exist_ok=True)
|
||||
logger.addHandler(logging.FileHandler('logs/tune_distilbert.log'))
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
import flaml
|
||||
|
||||
def train_distilbert(config: dict):
|
||||
|
||||
metric = load_metric("glue", TASK)
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
predictions, labels = eval_pred
|
||||
predictions = np.argmax(predictions, axis=1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
# Load CoLA dataset and apply tokenizer
|
||||
cola_raw = load_dataset("glue", TASK)
|
||||
|
||||
cola_encoded = cola_raw.map(tokenize, batched=True)
|
||||
train_dataset, eval_dataset = cola_encoded["train"], cola_encoded["validation"]
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
MODEL_CHECKPOINT, num_labels=NUM_LABELS
|
||||
)
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir='.',
|
||||
do_eval=False,
|
||||
disable_tqdm=True,
|
||||
logging_steps=20000,
|
||||
save_total_limit=0,
|
||||
**config,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# train model
|
||||
trainer.train()
|
||||
|
||||
# evaluate model
|
||||
eval_output = trainer.evaluate()
|
||||
|
||||
flaml.tune.report(
|
||||
loss=eval_output["eval_loss"],
|
||||
matthews_correlation=eval_output["eval_matthews_correlation"],
|
||||
)
|
||||
|
||||
|
||||
def _test_distillbert(method='BlendSearch'):
|
||||
|
||||
max_num_epoch = 64
|
||||
num_samples = -1
|
||||
time_budget_s = 3600
|
||||
|
||||
search_space = {
|
||||
# You can mix constants with search space objects.
|
||||
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
|
||||
"learning_rate": flaml.tune.loguniform(1e-6, 1e-4),
|
||||
"adam_beta1": flaml.tune.uniform(0.8, 0.99),
|
||||
"adam_beta2": flaml.tune.loguniform(98e-2, 9999e-4),
|
||||
"adam_epsilon": flaml.tune.loguniform(1e-9, 1e-7),
|
||||
}
|
||||
|
||||
start_time = time.time()
|
||||
ray.init(num_cpus=4, num_gpus=4)
|
||||
if 'ASHA' == method:
|
||||
algo = None
|
||||
elif 'BOHB' == method:
|
||||
from ray.tune.schedulers import HyperBandForBOHB
|
||||
from ray.tune.suggest.bohb import tuneBOHB
|
||||
algo = tuneBOHB(max_concurrent=4)
|
||||
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
|
||||
elif 'Optuna' == method:
|
||||
from ray.tune.suggest.optuna import OptunaSearch
|
||||
algo = OptunaSearch()
|
||||
elif 'CFO' == method:
|
||||
from flaml import CFO
|
||||
algo = CFO(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
}])
|
||||
elif 'BlendSearch' == method:
|
||||
from flaml import BlendSearch
|
||||
algo = BlendSearch(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
}])
|
||||
elif 'Dragonfly' == method:
|
||||
from ray.tune.suggest.dragonfly import DragonflySearch
|
||||
algo = DragonflySearch()
|
||||
elif 'SkOpt' == method:
|
||||
from ray.tune.suggest.skopt import SkOptSearch
|
||||
algo = SkOptSearch()
|
||||
elif 'Nevergrad' == method:
|
||||
from ray.tune.suggest.nevergrad import NevergradSearch
|
||||
import nevergrad as ng
|
||||
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
|
||||
elif 'ZOOpt' == method:
|
||||
from ray.tune.suggest.zoopt import ZOOptSearch
|
||||
algo = ZOOptSearch(budget=num_samples)
|
||||
elif 'Ax' == method:
|
||||
from ray.tune.suggest.ax import AxSearch
|
||||
algo = AxSearch(max_concurrent=3)
|
||||
elif 'HyperOpt' == method:
|
||||
from ray.tune.suggest.hyperopt import HyperOptSearch
|
||||
algo = HyperOptSearch()
|
||||
scheduler = None
|
||||
if method != 'BOHB':
|
||||
from ray.tune.schedulers import ASHAScheduler
|
||||
scheduler = ASHAScheduler(
|
||||
max_t=max_num_epoch,
|
||||
grace_period=1)
|
||||
scheduler = None
|
||||
analysis = ray.tune.run(
|
||||
train_distilbert,
|
||||
metric=HP_METRIC,
|
||||
mode=MODE,
|
||||
resources_per_trial={"gpu": 4, "cpu": 4},
|
||||
config=search_space, local_dir='logs/',
|
||||
num_samples=num_samples, time_budget_s=time_budget_s,
|
||||
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
|
||||
scheduler=scheduler, search_alg=algo)
|
||||
|
||||
ray.shutdown()
|
||||
|
||||
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
|
||||
metric = best_trial.metric_analysis[HP_METRIC][MODE]
|
||||
|
||||
logger.info(f"method={method}")
|
||||
logger.info(f"n_trials={len(analysis.trials)}")
|
||||
logger.info(f"time={time.time()-start_time}")
|
||||
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
|
||||
logger.info(f"Best model parameters: {best_trial.config}")
|
||||
|
||||
|
||||
def _test_distillbert_cfo():
|
||||
_test_distillbert('CFO')
|
||||
|
||||
|
||||
def _test_distillbert_dragonfly():
|
||||
_test_distillbert('Dragonfly')
|
||||
|
||||
|
||||
def _test_distillbert_skopt():
|
||||
_test_distillbert('SkOpt')
|
||||
|
||||
|
||||
def _test_distillbert_nevergrad():
|
||||
_test_distillbert('Nevergrad')
|
||||
|
||||
|
||||
def _test_distillbert_zoopt():
|
||||
_test_distillbert('ZOOpt')
|
||||
|
||||
|
||||
def _test_distillbert_ax():
|
||||
_test_distillbert('Ax')
|
||||
|
||||
|
||||
def __test_distillbert_hyperopt():
|
||||
_test_distillbert('HyperOpt')
|
||||
|
||||
|
||||
def _test_distillbert_optuna():
|
||||
_test_distillbert('Optuna')
|
||||
|
||||
|
||||
def _test_distillbert_asha():
|
||||
_test_distillbert('ASHA')
|
||||
|
||||
|
||||
def _test_distillbert_bohb():
|
||||
_test_distillbert('BOHB')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_distillbert()
|
||||
250
test/hf/test_electra.py
Normal file
250
test/hf/test_electra.py
Normal file
@@ -0,0 +1,250 @@
|
||||
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
|
||||
'''
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
import ray
|
||||
from datasets import (
|
||||
load_dataset,
|
||||
load_metric,
|
||||
)
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
)
|
||||
MODEL_CHECKPOINT = "google/electra-base-discriminator"
|
||||
task_to_keys = {
|
||||
"cola": ("sentence", None),
|
||||
"mnli": ("premise", "hypothesis"),
|
||||
"mrpc": ("sentence1", "sentence2"),
|
||||
"qnli": ("question", "sentence"),
|
||||
"qqp": ("question1", "question2"),
|
||||
"rte": ("sentence1", "sentence2"),
|
||||
"sst2": ("sentence", None),
|
||||
"stsb": ("sentence1", "sentence2"),
|
||||
"wnli": ("sentence1", "sentence2"),
|
||||
}
|
||||
max_seq_length=128
|
||||
overwrite_cache=False
|
||||
pad_to_max_length=True
|
||||
padding = "max_length"
|
||||
|
||||
TASK = "qnli"
|
||||
# HP_METRIC, MODE = "loss", "min"
|
||||
HP_METRIC, MODE = "accuracy", "max"
|
||||
|
||||
sentence1_key, sentence2_key = task_to_keys[TASK]
|
||||
# Define tokenize method
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
|
||||
|
||||
def tokenize(examples):
|
||||
args = (
|
||||
(examples[sentence1_key],) if sentence2_key is None else (
|
||||
examples[sentence1_key], examples[sentence2_key])
|
||||
)
|
||||
return tokenizer(*args, padding=padding, max_length=max_seq_length,
|
||||
truncation=True)
|
||||
|
||||
except:
|
||||
print("pip install torch transformers datasets flaml[blendsearch,ray]")
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
import os
|
||||
os.makedirs('logs', exist_ok=True)
|
||||
logger.addHandler(logging.FileHandler('logs/tune_electra.log'))
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
import flaml
|
||||
|
||||
def train_electra(config: dict):
|
||||
|
||||
# Load dataset and apply tokenizer
|
||||
data_raw = load_dataset("glue", TASK)
|
||||
data_encoded = data_raw.map(tokenize, batched=True)
|
||||
train_dataset, eval_dataset = data_encoded["train"], data_encoded["validation"]
|
||||
|
||||
NUM_LABELS = len(train_dataset.features["label"].names)
|
||||
|
||||
metric = load_metric("glue", TASK)
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
predictions, labels = eval_pred
|
||||
predictions = np.argmax(predictions, axis=1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
MODEL_CHECKPOINT, num_labels=NUM_LABELS
|
||||
)
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir='.',
|
||||
do_eval=False,
|
||||
disable_tqdm=True,
|
||||
logging_steps=20000,
|
||||
save_total_limit=0,
|
||||
fp16=True,
|
||||
**config,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# train model
|
||||
trainer.train()
|
||||
|
||||
# evaluate model
|
||||
eval_output = trainer.evaluate()
|
||||
|
||||
flaml.tune.report(
|
||||
loss=eval_output["eval_loss"],
|
||||
accuracy=eval_output["eval_accuracy"],
|
||||
)
|
||||
|
||||
try:
|
||||
from azureml.core import Run
|
||||
run = Run.get_context()
|
||||
run.log('accuracy', eval_output["eval_accuracy"])
|
||||
run.log('loss', eval_output["eval_loss"])
|
||||
run.log('config', config)
|
||||
except: pass
|
||||
|
||||
def _test_electra(method='BlendSearch'):
|
||||
|
||||
max_num_epoch = 9
|
||||
num_samples = -1
|
||||
time_budget_s = 3600
|
||||
|
||||
search_space = {
|
||||
# You can mix constants with search space objects.
|
||||
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
|
||||
"learning_rate": flaml.tune.loguniform(3e-5, 1.5e-4),
|
||||
"weight_decay": flaml.tune.uniform(0, 0.3),
|
||||
"per_device_train_batch_size": flaml.tune.choice([16, 32, 64, 128]),
|
||||
"seed": flaml.tune.choice([12, 22, 33, 42]),
|
||||
}
|
||||
|
||||
start_time = time.time()
|
||||
ray.init(num_cpus=4, num_gpus=4)
|
||||
if 'ASHA' == method:
|
||||
algo = None
|
||||
elif 'BOHB' == method:
|
||||
from ray.tune.schedulers import HyperBandForBOHB
|
||||
from ray.tune.suggest.bohb import tuneBOHB
|
||||
algo = tuneBOHB(max_concurrent=4)
|
||||
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
|
||||
elif 'Optuna' == method:
|
||||
from ray.tune.suggest.optuna import OptunaSearch
|
||||
algo = OptunaSearch()
|
||||
elif 'CFO' == method:
|
||||
from flaml import CFO
|
||||
algo = CFO(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
"per_device_train_batch_size": 128,
|
||||
}])
|
||||
elif 'BlendSearch' == method:
|
||||
from flaml import BlendSearch
|
||||
algo = BlendSearch(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
"per_device_train_batch_size": 128,
|
||||
}])
|
||||
elif 'Dragonfly' == method:
|
||||
from ray.tune.suggest.dragonfly import DragonflySearch
|
||||
algo = DragonflySearch()
|
||||
elif 'SkOpt' == method:
|
||||
from ray.tune.suggest.skopt import SkOptSearch
|
||||
algo = SkOptSearch()
|
||||
elif 'Nevergrad' == method:
|
||||
from ray.tune.suggest.nevergrad import NevergradSearch
|
||||
import nevergrad as ng
|
||||
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
|
||||
elif 'ZOOpt' == method:
|
||||
from ray.tune.suggest.zoopt import ZOOptSearch
|
||||
algo = ZOOptSearch(budget=num_samples)
|
||||
elif 'Ax' == method:
|
||||
from ray.tune.suggest.ax import AxSearch
|
||||
algo = AxSearch(max_concurrent=3)
|
||||
elif 'HyperOpt' == method:
|
||||
from ray.tune.suggest.hyperopt import HyperOptSearch
|
||||
algo = HyperOptSearch()
|
||||
scheduler = None
|
||||
if method != 'BOHB':
|
||||
from ray.tune.schedulers import ASHAScheduler
|
||||
scheduler = ASHAScheduler(
|
||||
max_t=max_num_epoch,
|
||||
grace_period=1)
|
||||
scheduler = None
|
||||
analysis = ray.tune.run(
|
||||
train_electra,
|
||||
metric=HP_METRIC,
|
||||
mode=MODE,
|
||||
resources_per_trial={"gpu": 4, "cpu": 4},
|
||||
config=search_space, local_dir='logs/',
|
||||
num_samples=num_samples, time_budget_s=time_budget_s,
|
||||
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
|
||||
scheduler=scheduler, search_alg=algo)
|
||||
|
||||
ray.shutdown()
|
||||
|
||||
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
|
||||
metric = best_trial.metric_analysis[HP_METRIC][MODE]
|
||||
|
||||
logger.info(f"method={method}")
|
||||
logger.info(f"n_trials={len(analysis.trials)}")
|
||||
logger.info(f"time={time.time()-start_time}")
|
||||
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
|
||||
logger.info(f"Best model parameters: {best_trial.config}")
|
||||
|
||||
|
||||
def _test_electra_cfo():
|
||||
_test_electra('CFO')
|
||||
|
||||
|
||||
def _test_electra_dragonfly():
|
||||
_test_electra('Dragonfly')
|
||||
|
||||
|
||||
def _test_electra_skopt():
|
||||
_test_electra('SkOpt')
|
||||
|
||||
|
||||
def _test_electra_nevergrad():
|
||||
_test_electra('Nevergrad')
|
||||
|
||||
|
||||
def _test_electra_zoopt():
|
||||
_test_electra('ZOOpt')
|
||||
|
||||
|
||||
def _test_electra_ax():
|
||||
_test_electra('Ax')
|
||||
|
||||
|
||||
def __test_electra_hyperopt():
|
||||
_test_electra('HyperOpt')
|
||||
|
||||
|
||||
def _test_electra_optuna():
|
||||
_test_electra('Optuna')
|
||||
|
||||
|
||||
def _test_electra_asha():
|
||||
_test_electra('ASHA')
|
||||
|
||||
|
||||
def _test_electra_bohb():
|
||||
_test_electra('BOHB')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_electra()
|
||||
251
test/hf/test_roberta.py
Normal file
251
test/hf/test_roberta.py
Normal file
@@ -0,0 +1,251 @@
|
||||
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
|
||||
'''
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
import ray
|
||||
from datasets import (
|
||||
load_dataset,
|
||||
load_metric,
|
||||
)
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
)
|
||||
MODEL_CHECKPOINT = "roberta-base"
|
||||
task_to_keys = {
|
||||
"cola": ("sentence", None),
|
||||
"mnli": ("premise", "hypothesis"),
|
||||
"mrpc": ("sentence1", "sentence2"),
|
||||
"qnli": ("question", "sentence"),
|
||||
"qqp": ("question1", "question2"),
|
||||
"rte": ("sentence1", "sentence2"),
|
||||
"sst2": ("sentence", None),
|
||||
"stsb": ("sentence1", "sentence2"),
|
||||
"wnli": ("sentence1", "sentence2"),
|
||||
}
|
||||
max_seq_length=128
|
||||
overwrite_cache=False
|
||||
pad_to_max_length=True
|
||||
padding = "max_length"
|
||||
|
||||
TASK = "qnli"
|
||||
# HP_METRIC, MODE = "loss", "min"
|
||||
HP_METRIC, MODE = "accuracy", "max"
|
||||
|
||||
sentence1_key, sentence2_key = task_to_keys[TASK]
|
||||
# Define tokenize method
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
|
||||
|
||||
def tokenize(examples):
|
||||
args = (
|
||||
(examples[sentence1_key],) if sentence2_key is None else (
|
||||
examples[sentence1_key], examples[sentence2_key])
|
||||
)
|
||||
return tokenizer(*args, padding=padding, max_length=max_seq_length,
|
||||
truncation=True)
|
||||
|
||||
except:
|
||||
print("pip install torch transformers datasets flaml[blendsearch,ray]")
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
import os
|
||||
os.makedirs('logs', exist_ok=True)
|
||||
logger.addHandler(logging.FileHandler('logs/tune_roberta.log'))
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
import flaml
|
||||
|
||||
def train_roberta(config: dict):
|
||||
|
||||
# Load dataset and apply tokenizer
|
||||
data_raw = load_dataset("glue", TASK)
|
||||
data_encoded = data_raw.map(tokenize, batched=True)
|
||||
train_dataset, eval_dataset = data_encoded["train"], data_encoded["validation"]
|
||||
|
||||
NUM_LABELS = len(train_dataset.features["label"].names)
|
||||
|
||||
metric = load_metric("glue", TASK)
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
predictions, labels = eval_pred
|
||||
predictions = np.argmax(predictions, axis=1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
MODEL_CHECKPOINT, num_labels=NUM_LABELS
|
||||
)
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir='.',
|
||||
do_eval=False,
|
||||
disable_tqdm=True,
|
||||
logging_steps=20000,
|
||||
save_total_limit=0,
|
||||
fp16=True,
|
||||
**config,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# train model
|
||||
trainer.train()
|
||||
|
||||
# evaluate model
|
||||
eval_output = trainer.evaluate()
|
||||
|
||||
flaml.tune.report(
|
||||
loss=eval_output["eval_loss"],
|
||||
accuracy=eval_output["eval_accuracy"],
|
||||
)
|
||||
|
||||
try:
|
||||
from azureml.core import Run
|
||||
run = Run.get_context()
|
||||
run.log('accuracy', eval_output["eval_accuracy"])
|
||||
run.log('loss', eval_output["eval_loss"])
|
||||
run.log('config', config)
|
||||
except: pass
|
||||
|
||||
def _test_roberta(method='BlendSearch'):
|
||||
|
||||
max_num_epoch = 100
|
||||
num_samples = -1
|
||||
time_budget_s = 3600
|
||||
|
||||
search_space = {
|
||||
# You can mix constants with search space objects.
|
||||
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
|
||||
"learning_rate": flaml.tune.loguniform(1e-5, 3e-5),
|
||||
"weight_decay": flaml.tune.uniform(0, 0.3),
|
||||
"per_device_train_batch_size": flaml.tune.choice([16, 32, 64, 128]),
|
||||
"seed": flaml.tune.choice([12, 22, 33, 42]),
|
||||
}
|
||||
|
||||
start_time = time.time()
|
||||
ray.init(num_cpus=4, num_gpus=4)
|
||||
if 'ASHA' == method:
|
||||
algo = None
|
||||
elif 'BOHB' == method:
|
||||
from ray.tune.schedulers import HyperBandForBOHB
|
||||
from ray.tune.suggest.bohb import tuneBOHB
|
||||
algo = tuneBOHB(max_concurrent=4)
|
||||
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
|
||||
elif 'Optuna' == method:
|
||||
from ray.tune.suggest.optuna import OptunaSearch
|
||||
algo = OptunaSearch()
|
||||
elif 'CFO' == method:
|
||||
from flaml import CFO
|
||||
algo = CFO(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
"per_device_train_batch_size": 128,
|
||||
}])
|
||||
elif 'BlendSearch' == method:
|
||||
from flaml import BlendSearch
|
||||
algo = BlendSearch(points_to_evaluate=[{
|
||||
"num_train_epochs": 1,
|
||||
"per_device_train_batch_size": 128,
|
||||
}])
|
||||
elif 'Dragonfly' == method:
|
||||
from ray.tune.suggest.dragonfly import DragonflySearch
|
||||
algo = DragonflySearch()
|
||||
elif 'SkOpt' == method:
|
||||
from ray.tune.suggest.skopt import SkOptSearch
|
||||
algo = SkOptSearch()
|
||||
elif 'Nevergrad' == method:
|
||||
from ray.tune.suggest.nevergrad import NevergradSearch
|
||||
import nevergrad as ng
|
||||
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
|
||||
elif 'ZOOpt' == method:
|
||||
from ray.tune.suggest.zoopt import ZOOptSearch
|
||||
algo = ZOOptSearch(budget=num_samples)
|
||||
elif 'Ax' == method:
|
||||
from ray.tune.suggest.ax import AxSearch
|
||||
algo = AxSearch(max_concurrent=3)
|
||||
elif 'HyperOpt' == method:
|
||||
from ray.tune.suggest.hyperopt import HyperOptSearch
|
||||
algo = HyperOptSearch()
|
||||
scheduler = None
|
||||
if method != 'BOHB':
|
||||
from ray.tune.schedulers import ASHAScheduler
|
||||
scheduler = ASHAScheduler(
|
||||
max_t=max_num_epoch,
|
||||
grace_period=1)
|
||||
scheduler = None
|
||||
analysis = ray.tune.run(
|
||||
train_roberta,
|
||||
metric=HP_METRIC,
|
||||
mode=MODE,
|
||||
resources_per_trial={"gpu": 4, "cpu": 4},
|
||||
config=search_space, local_dir='logs/',
|
||||
num_samples=num_samples, time_budget_s=time_budget_s,
|
||||
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
|
||||
scheduler=scheduler, search_alg=algo)
|
||||
|
||||
ray.shutdown()
|
||||
|
||||
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
|
||||
metric = best_trial.metric_analysis[HP_METRIC][MODE]
|
||||
|
||||
logger.info(f"method={method}")
|
||||
logger.info(f"n_trials={len(analysis.trials)}")
|
||||
logger.info(f"time={time.time()-start_time}")
|
||||
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
|
||||
logger.info(f"Best model parameters: {best_trial.config}")
|
||||
|
||||
|
||||
def _test_roberta_cfo():
|
||||
_test_roberta('CFO')
|
||||
|
||||
|
||||
def _test_roberta_dragonfly():
|
||||
_test_roberta('Dragonfly')
|
||||
|
||||
|
||||
def _test_roberta_skopt():
|
||||
_test_roberta('SkOpt')
|
||||
|
||||
|
||||
def _test_roberta_nevergrad():
|
||||
_test_roberta('Nevergrad')
|
||||
|
||||
|
||||
def _test_roberta_zoopt():
|
||||
_test_roberta('ZOOpt')
|
||||
|
||||
|
||||
def _test_roberta_ax():
|
||||
_test_roberta('Ax')
|
||||
|
||||
|
||||
def __test_roberta_hyperopt():
|
||||
_test_roberta('HyperOpt')
|
||||
|
||||
|
||||
def _test_roberta_optuna():
|
||||
_test_roberta('Optuna')
|
||||
|
||||
|
||||
def _test_roberta_asha():
|
||||
_test_roberta('ASHA')
|
||||
|
||||
|
||||
def _test_roberta_bohb():
|
||||
_test_roberta('BOHB')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_roberta()
|
||||
|
||||
19
test/nni/config.yml
Normal file
19
test/nni/config.yml
Normal file
@@ -0,0 +1,19 @@
|
||||
# usage: nnictl create --config ./config.yml
|
||||
authorName: default
|
||||
experimentName: example_mnist
|
||||
trialConcurrency: 1
|
||||
maxExecDuration: 1h
|
||||
maxTrialNum: 10
|
||||
trainingServicePlatform: local
|
||||
# The path to Search Space
|
||||
searchSpacePath: search_space.json
|
||||
useAnnotation: false
|
||||
tuner:
|
||||
codeDir: ./
|
||||
classFileName: flaml_nni_wrap.py
|
||||
className: BlendSearchTuner
|
||||
# The path and the running command of trial
|
||||
trial:
|
||||
command: python3 mnist.py
|
||||
codeDir: .
|
||||
gpuNum: 0
|
||||
7
test/nni/flaml_nni_wrap.py
Normal file
7
test/nni/flaml_nni_wrap.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from flaml.searcher.blendsearch import BlendSearchTuner as BST
|
||||
|
||||
|
||||
class BlendSearchTuner(BST):
|
||||
# for best performance pass low cost initial parameters here
|
||||
def __init__(self, points_to_evaluate=[{"hidden_size":128}]):
|
||||
super.__init__(self, points_to_evaluate=points_to_evaluate)
|
||||
169
test/nni/mnist.py
Normal file
169
test/nni/mnist.py
Normal file
@@ -0,0 +1,169 @@
|
||||
# This file is copied from NNI project
|
||||
# https://github.com/microsoft/nni/blob/master/examples/trials/mnist-tfv1/mnist.py
|
||||
|
||||
"""
|
||||
A deep MNIST classifier using convolutional layers.
|
||||
|
||||
This file is a modification of the official pytorch mnist example:
|
||||
https://github.com/pytorch/examples/blob/master/mnist/main.py
|
||||
"""
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import logging
|
||||
import nni
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
from nni.utils import merge_parameter
|
||||
from torchvision import datasets, transforms
|
||||
|
||||
logger = logging.getLogger('mnist_AutoML')
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self, hidden_size):
|
||||
super(Net, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
||||
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
||||
self.fc1 = nn.Linear(4*4*50, hidden_size)
|
||||
self.fc2 = nn.Linear(hidden_size, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = F.relu(self.conv2(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = x.view(-1, 4*4*50)
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
|
||||
def train(args, model, device, train_loader, optimizer, epoch):
|
||||
model.train()
|
||||
for batch_idx, (data, target) in enumerate(train_loader):
|
||||
if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:
|
||||
break
|
||||
data, target = data.to(device), target.to(device)
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = F.nll_loss(output, target)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if batch_idx % args['log_interval'] == 0:
|
||||
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
||||
epoch, batch_idx * len(data), len(train_loader.dataset),
|
||||
100. * batch_idx / len(train_loader), loss.item()))
|
||||
|
||||
|
||||
def test(args, model, device, test_loader):
|
||||
model.eval()
|
||||
test_loss = 0
|
||||
correct = 0
|
||||
with torch.no_grad():
|
||||
for data, target in test_loader:
|
||||
data, target = data.to(device), target.to(device)
|
||||
output = model(data)
|
||||
# sum up batch loss
|
||||
test_loss += F.nll_loss(output, target, reduction='sum').item()
|
||||
# get the index of the max log-probability
|
||||
pred = output.argmax(dim=1, keepdim=True)
|
||||
correct += pred.eq(target.view_as(pred)).sum().item()
|
||||
|
||||
test_loss /= len(test_loader.dataset)
|
||||
|
||||
accuracy = 100. * correct / len(test_loader.dataset)
|
||||
|
||||
logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
||||
test_loss, correct, len(test_loader.dataset), accuracy))
|
||||
|
||||
return accuracy
|
||||
|
||||
|
||||
def main(args):
|
||||
use_cuda = not args['no_cuda'] and torch.cuda.is_available()
|
||||
|
||||
torch.manual_seed(args['seed'])
|
||||
|
||||
device = torch.device("cuda" if use_cuda else "cpu")
|
||||
|
||||
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
||||
|
||||
data_dir = args['data_dir']
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST(data_dir, train=True, download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])),
|
||||
batch_size=args['batch_size'], shuffle=True, **kwargs)
|
||||
test_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])),
|
||||
batch_size=1000, shuffle=True, **kwargs)
|
||||
|
||||
hidden_size = args['hidden_size']
|
||||
|
||||
model = Net(hidden_size=hidden_size).to(device)
|
||||
optimizer = optim.SGD(model.parameters(), lr=args['lr'],
|
||||
momentum=args['momentum'])
|
||||
|
||||
for epoch in range(1, args['epochs'] + 1):
|
||||
train(args, model, device, train_loader, optimizer, epoch)
|
||||
test_acc = test(args, model, device, test_loader)
|
||||
|
||||
# report intermediate result
|
||||
nni.report_intermediate_result(test_acc)
|
||||
logger.debug('test accuracy %g', test_acc)
|
||||
logger.debug('Pipe send intermediate result done.')
|
||||
|
||||
# report final result
|
||||
nni.report_final_result(test_acc)
|
||||
logger.debug('Final result is %g', test_acc)
|
||||
logger.debug('Send final result done.')
|
||||
|
||||
|
||||
def get_params():
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
||||
parser.add_argument("--data_dir", type=str,
|
||||
default='./data', help="data directory")
|
||||
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
|
||||
help='input batch size for training (default: 64)')
|
||||
parser.add_argument("--batch_num", type=int, default=None)
|
||||
parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
|
||||
help='hidden layer size (default: 512)')
|
||||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
||||
help='learning rate (default: 0.01)')
|
||||
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
|
||||
help='SGD momentum (default: 0.5)')
|
||||
parser.add_argument('--epochs', type=int, default=10, metavar='N',
|
||||
help='number of epochs to train (default: 10)')
|
||||
parser.add_argument('--seed', type=int, default=1, metavar='S',
|
||||
help='random seed (default: 1)')
|
||||
parser.add_argument('--no_cuda', action='store_true', default=False,
|
||||
help='disables CUDA training')
|
||||
parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
|
||||
help='how many batches to wait before logging training status')
|
||||
|
||||
|
||||
args, _ = parser.parse_known_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
# get parameters form tuner
|
||||
tuner_params = nni.get_next_parameter()
|
||||
logger.debug(tuner_params)
|
||||
params = vars(merge_parameter(get_params(), tuner_params))
|
||||
print(params)
|
||||
main(params)
|
||||
except Exception as exception:
|
||||
logger.exception(exception)
|
||||
raise
|
||||
6
test/nni/search_space.json
Normal file
6
test/nni/search_space.json
Normal file
@@ -0,0 +1,6 @@
|
||||
{
|
||||
"batch_size": {"_type":"choice", "_value": [16, 32, 64, 128]},
|
||||
"hidden_size":{"_type":"choice","_value":[128, 256, 512, 1024]},
|
||||
"lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},
|
||||
"momentum":{"_type":"uniform","_value":[0, 1]}
|
||||
}
|
||||
19
test/run_electra.py
Normal file
19
test/run_electra.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from azureml.core import Workspace, Experiment, ScriptRunConfig
|
||||
ws = Workspace.from_config()
|
||||
|
||||
compute_target = ws.compute_targets['V100-4']
|
||||
# compute_target = ws.compute_targets['K80']
|
||||
command = [
|
||||
"pip install torch transformers datasets flaml[blendsearch,ray] ax-platform sqlalchemy && ",
|
||||
"python test_electra.py"]
|
||||
|
||||
config = ScriptRunConfig(
|
||||
source_directory='hf/',
|
||||
command=command,
|
||||
compute_target=compute_target,
|
||||
)
|
||||
|
||||
exp = Experiment(ws, 'test-electra')
|
||||
run = exp.submit(config)
|
||||
print(run.get_portal_url()) # link to ml.azure.com
|
||||
run.wait_for_completion(show_output=True)
|
||||
@@ -98,6 +98,8 @@ class TestAutoML(unittest.TestCase):
|
||||
|
||||
'''The main flaml automl API'''
|
||||
automl.fit(X_train = X_train, y_train = y_train, **settings)
|
||||
# print the best model found for RGF
|
||||
print(automl.best_model_for_estimator("RGF"))
|
||||
|
||||
def test_ensemble(self):
|
||||
automl = AutoML()
|
||||
@@ -170,6 +172,10 @@ class TestAutoML(unittest.TestCase):
|
||||
"model_history": True
|
||||
}
|
||||
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
||||
if as_frame:
|
||||
# test drop column
|
||||
X_train.columns = range(X_train.shape[1])
|
||||
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
||||
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||||
**automl_settings)
|
||||
print(automl_experiment.classes_)
|
||||
@@ -250,7 +256,8 @@ class TestAutoML(unittest.TestCase):
|
||||
"task": 'regression',
|
||||
"log_file_name": "test/sparse_regression.log",
|
||||
"n_jobs": 1,
|
||||
"model_history": True
|
||||
"model_history": True,
|
||||
"verbose": 0,
|
||||
}
|
||||
X_train = scipy.sparse.random(300, 900, density=0.0001)
|
||||
y_train = np.random.uniform(size=300)
|
||||
@@ -274,7 +281,7 @@ class TestAutoML(unittest.TestCase):
|
||||
|
||||
automl_experiment = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 2,
|
||||
"time_budget": 3,
|
||||
"metric": 'ap',
|
||||
"task": 'classification',
|
||||
"log_file_name": "test/sparse_classification.log",
|
||||
@@ -325,10 +332,11 @@ class TestAutoML(unittest.TestCase):
|
||||
"task": 'regression',
|
||||
"log_file_name": "test/sparse_regression.log",
|
||||
"n_jobs": 1,
|
||||
"model_history": True
|
||||
"model_history": True,
|
||||
"metric": "mse"
|
||||
}
|
||||
X_train = scipy.sparse.random(100, 100)
|
||||
y_train = np.random.uniform(size=100)
|
||||
X_train = scipy.sparse.random(8, 100)
|
||||
y_train = np.random.uniform(size=8)
|
||||
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||||
**automl_settings)
|
||||
print(automl_experiment.predict(X_train))
|
||||
|
||||
@@ -26,7 +26,7 @@ class TestLogging(unittest.TestCase):
|
||||
logger.addHandler(ch)
|
||||
|
||||
# Run a simple job.
|
||||
automl_experiment = AutoML()
|
||||
automl = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 1,
|
||||
"metric": 'mse',
|
||||
@@ -34,13 +34,18 @@ class TestLogging(unittest.TestCase):
|
||||
"log_file_name": training_log,
|
||||
"log_training_metric": True,
|
||||
"n_jobs": 1,
|
||||
"model_history": True
|
||||
"model_history": True,
|
||||
}
|
||||
X_train, y_train = load_boston(return_X_y=True)
|
||||
n = len(y_train) >> 1
|
||||
automl_experiment.fit(X_train=X_train[:n], y_train=y_train[:n],
|
||||
automl.fit(X_train=X_train[:n], y_train=y_train[:n],
|
||||
X_val=X_train[n:], y_val=y_train[n:],
|
||||
**automl_settings)
|
||||
|
||||
# Check if the log buffer is populated.
|
||||
self.assertTrue(len(buf.getvalue()) > 0)
|
||||
|
||||
import pickle
|
||||
with open('automl.pkl', 'wb') as f:
|
||||
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
||||
print(automl.__version__)
|
||||
@@ -1,3 +1,5 @@
|
||||
'''Require: pip install torchvision ray flaml[blendsearch]
|
||||
'''
|
||||
import unittest
|
||||
import os
|
||||
import time
|
||||
@@ -24,7 +26,6 @@ def load_data(data_dir="./data"):
|
||||
# __load_data_end__
|
||||
|
||||
|
||||
import numpy as np
|
||||
try:
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@@ -25,7 +25,8 @@ class TestTrainingLog(unittest.TestCase):
|
||||
"log_training_metric": True,
|
||||
"mem_thres": 1024*1024,
|
||||
"n_jobs": 1,
|
||||
"model_history": True
|
||||
"model_history": True,
|
||||
"verbose": 2,
|
||||
}
|
||||
X_train, y_train = load_boston(return_X_y=True)
|
||||
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
'''Require: pip install flaml[test,ray]
|
||||
'''
|
||||
import unittest
|
||||
import os
|
||||
import time
|
||||
from sklearn.model_selection import train_test_split
|
||||
import sklearn.metrics
|
||||
@@ -48,7 +49,6 @@ def _test_xgboost(method='BlendSearch'):
|
||||
else:
|
||||
from ray import tune
|
||||
search_space = {
|
||||
# You can mix constants with search space objects.
|
||||
"max_depth": tune.randint(1, 8) if method in [
|
||||
"BlendSearch", "BOHB", "Optuna"] else tune.randint(1, 9),
|
||||
"min_child_weight": tune.choice([1, 2, 3]),
|
||||
@@ -56,7 +56,7 @@ def _test_xgboost(method='BlendSearch'):
|
||||
"eta": tune.loguniform(1e-4, 1e-1)
|
||||
}
|
||||
max_iter = 10
|
||||
for num_samples in [256]:
|
||||
for num_samples in [128]:
|
||||
time_budget_s = 60 #None
|
||||
for n_cpu in [8]:
|
||||
start_time = time.time()
|
||||
@@ -138,6 +138,7 @@ def _test_xgboost(method='BlendSearch'):
|
||||
scheduler=scheduler, search_alg=algo)
|
||||
ray.shutdown()
|
||||
# # Load the best model checkpoint
|
||||
# import os
|
||||
# best_bst = xgb.Booster()
|
||||
# best_bst.load_model(os.path.join(analysis.best_checkpoint,
|
||||
# "model.xgb"))
|
||||
@@ -152,6 +153,33 @@ def _test_xgboost(method='BlendSearch'):
|
||||
logger.info(f"Best model parameters: {best_trial.config}")
|
||||
|
||||
|
||||
def test_nested():
|
||||
from flaml import tune
|
||||
search_space = {
|
||||
# test nested search space
|
||||
"cost_related": {
|
||||
"a": tune.randint(1, 8),
|
||||
},
|
||||
"b": tune.uniform(0.5, 1.0),
|
||||
}
|
||||
|
||||
def simple_func(config):
|
||||
tune.report(
|
||||
metric=(config["cost_related"]["a"]-4)**2 * (config["b"]-0.7)**2)
|
||||
|
||||
analysis = tune.run(
|
||||
simple_func,
|
||||
init_config={
|
||||
"cost_related": {"a": 1,}
|
||||
},
|
||||
metric="metric",
|
||||
mode="min",
|
||||
config=search_space,
|
||||
local_dir='logs/',
|
||||
num_samples=-1,
|
||||
time_budget_s=1)
|
||||
|
||||
|
||||
def test_xgboost_bs():
|
||||
_test_xgboost()
|
||||
|
||||
|
||||
@@ -8,11 +8,7 @@ from flaml.model import XGBoostSklearnEstimator
|
||||
from flaml import tune
|
||||
|
||||
|
||||
# dataset = "blood-transfusion-service-center"
|
||||
# dataset = "Australian"
|
||||
dataset = "credit-g"
|
||||
# dataset = "phoneme"
|
||||
# dataset = "kc1"
|
||||
|
||||
|
||||
class XGBoost2D(XGBoostSklearnEstimator):
|
||||
@@ -50,8 +46,11 @@ def test_simple(method=None):
|
||||
"log_type": "all",
|
||||
"time_budget": 3#6000,
|
||||
}
|
||||
|
||||
X, y = fetch_openml(name=dataset, return_X_y=True)
|
||||
try:
|
||||
X, y = fetch_openml(name=dataset, return_X_y=True)
|
||||
except:
|
||||
from sklearn.datasets import load_wine
|
||||
X, y = load_wine(return_X_y=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
|
||||
random_state=42)
|
||||
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
|
||||
Reference in New Issue
Block a user