Compare commits

...

17 Commits

Author SHA1 Message Date
Chi Wang
ae5f8e5426 data validation (#45)
* pickle the AutoML object

* get best model per estimator

* test deberta

* stateless API

* prevent divide by zero

* test roberta

* BlendSearchTuner

* delta time

* reindex columns when dropping int-indexed columns

* test drop columns and small training data

* param set for ensemble builder

* fillna on copy

Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
2021-03-19 09:50:47 -07:00
Iman Hosseini
bf95d7c455 nni example + bugfix in blendsearch (#44)
* nni example + bugfix in blendsearch

re: https://github.com/microsoft/FLAML/issues/36
2021-03-18 22:35:23 -07:00
Iman Hosseini
0f99526b63 Update automl.py to add verbose argument to fit (#40)
* Update automl.py

* Pass verbose-1 to tune

passing verbose-1 to tune, ensures that for verbose=1, tune is silenced (no INFO prints) and for verbose=2 we see the INFO prints, and for verbose=3 we get DEBUG level at tune, as we want. This is due to: https://github.com/microsoft/FLAML/blob/main/flaml/tune/tune.py#L227
2021-03-17 10:54:17 -07:00
Antoni Baum
b8736bc600 Normalize config in _valid (#42) 2021-03-17 09:51:23 -07:00
Chi Wang
4a8110c87b pickle the AutoML object (#37)
* pickle the AutoML object

* get best model per estimator

* test deberta

* stateless API

* Add Gitter badge (#41)

* prevent divide by zero

* test roberta

* BlendSearchTuner

Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: The Gitter Badger <badger@gitter.im>
2021-03-16 22:13:35 -07:00
The Gitter Badger
ec37ae8f8f Add Gitter badge (#41) 2021-03-13 12:44:41 -08:00
liuzhe-lz
840e3fc104 Fix bug in NNI tuner (#34)
* fix bug in nni tuner

* Update version.py

Co-authored-by: liuzhe <zhe.liu@microsoft.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2021-03-06 10:38:33 -08:00
Chi Wang
1560a6e52a V0.2.7 (#35)
* bug fix

* admissible region

* use CFO's init point as backup

* step lower bound

* test electra
2021-03-05 23:39:14 -08:00
Chi Wang
7bd231e497 v0.2.6 (#32)
* xgboost notebook

* finetuning notebook

* finetuning test

* experimental nni support

* support nested search space

* log file name

* record training_iteration

* eps

* reset times

* std set to default step size if 0
2021-02-28 12:43:43 -08:00
Chi Wang
6ff0ed434b v0.2.5 (#30)
* test distillbert

* import check

* complete partial config

* None check

* init config is not suggested by bo

* badge

* notebook for lightgbm
2021-02-22 22:10:41 -08:00
Qingyun Wu
2d3bd84038 Merge pull request #28 from microsoft/v0.2.4
v0.2.4
2021-02-17 18:14:24 -05:00
Chi Wang (MSR)
79a851e408 step curve 2021-02-17 14:03:19 -08:00
Chi Wang (MSR)
a1b0b303ed grid search check 2021-02-16 17:13:05 -08:00
Chi Wang (MSR)
3328157f31 requirements in example 2021-02-13 14:33:15 -08:00
Chi Wang (MSR)
da88aa77e3 None check 2021-02-13 10:58:49 -08:00
Chi Wang (MSR)
bd16eeee69 sample_weight; dependency; notebook 2021-02-13 10:43:11 -08:00
Qingyun Wu
d18d292081 Fix phasing in README.md 2021-02-11 14:40:29 -05:00
40 changed files with 5404 additions and 1929 deletions

View File

@@ -1,7 +1,7 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Python package
name: Build
on:
push:

6
.gitignore vendored
View File

@@ -146,6 +146,10 @@ dmypy.json
# Cython debug symbols
cython_debug/
/catboost_info
catboost_info
notebook/*.pkl
notebook/.azureml
mlruns
logs
automl.pkl

View File

@@ -1,3 +1,9 @@
[![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML)
[![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)
![Python Version](https://img.shields.io/badge/3.6%20%7C%203.7%20%7C%203.8-blue)
[![Downloads](https://pepy.tech/badge/flaml/month)](https://pepy.tech/project/flaml)
[![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
# FLAML - Fast and Lightweight AutoML
<p align="center">
@@ -5,13 +11,16 @@
<br>
</p>
FLAML is a Python library designed to automatically produce accurate machine
learning models with low computational cost. It frees users from selecting
learners and hyperparameters for each learner. It is fast and cheap.
FLAML is a lightweight Python library that finds accurate machine
learning models automatically, efficiently and economically. It frees users from selecting
learners and hyperparameters for each learner. It is fast and economical.
The simple and lightweight design makes it easy to extend, such as
adding customized learners or metrics. FLAML is powered by a new, [cost-effective
hyperparameter optimization](https://github.com/microsoft/FLAML/tree/main/flaml/tune)
and learner selection method invented by Microsoft Research.
FLAML leverages the structure of the search space to choose a search order optimized for both cost and error. For example, the system tends to propose cheap configurations at the beginning stage of the search,
but quickly moves to configurations with high model complexity and large sample size when needed in the later stage of the search. For another example, it favors cheap learners in the beginning but penalizes them later if the error improvement is slow. The cost-bounded search and cost-based prioritization make a big difference in the the search efficiency under budget constraints.
FLAML is easy to use:
* With three lines of code, you can start using this economical and fast
@@ -112,7 +121,7 @@ And they can be used in distributed HPO frameworks such as ray tune or nni.
For more technical details, please check our papers.
* [FLAML: A Fast and Lightweight AutoML Library](https://arxiv.org/abs/1911.04706). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. To appear in MLSys, 2021.
* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. To appear in MLSys, 2021.
```
@inproceedings{wang2021flaml,
title={FLAML: A Fast and Lightweight AutoML Library},
@@ -122,7 +131,7 @@ For more technical details, please check our papers.
}
```
* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.
* Economical Hyperparameter Optimization With Blended Search Strategy. Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
## Contributing
@@ -130,6 +139,8 @@ This project welcomes contributions and suggestions. Most contributions require
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
@@ -138,6 +149,23 @@ This project has adopted the [Microsoft Open Source Code of Conduct](https://ope
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
## Developing
### Setup:
```
git clone https://github.com/microsoft/FLAML.git
pip install -e .[test,notebook]
```
### Coverage
Any code you commit should generally not significantly impact coverage. To run all unit tests:
```
coverage run -m pytest test
```
If all the tests are passed, please also test run notebook/flaml_automl to make sure your commit does not break the notebook example.
## Authors
* Chi Wang

View File

@@ -1,5 +1,5 @@
from flaml.searcher import CFO, BlendSearch, FLOW2
from flaml.automl import AutoML
from flaml.searcher import CFO, BlendSearch, FLOW2, BlendSearchTuner
from flaml.automl import AutoML, logger_formatter
from flaml.version import __version__
import logging
@@ -7,10 +7,3 @@ import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Add the console handler.
_ch = logging.StreamHandler()
logger_formatter = logging.Formatter(
'[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s',
'%m-%d %H:%M:%S')
_ch.setFormatter(logger_formatter)
logger.addHandler(_ch)

View File

@@ -25,6 +25,10 @@ from .training_log import training_log_reader, training_log_writer
import logging
logger = logging.getLogger(__name__)
logger_formatter = logging.Formatter(
'[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s',
'%m-%d %H:%M:%S')
try:
import mlflow
except:
@@ -249,6 +253,8 @@ class AutoML:
'''
from .version import __version__
def __init__(self):
self._track_iter = 0
self._state = AutoMLState()
@@ -279,6 +285,22 @@ class AutoML:
else:
return None
def best_model_for_estimator(self, estimator_name):
'''Return the best model found for a particular estimator
Args:
estimator_name: a str of the estimator's name
Returns:
An object with `predict()` and `predict_proba()` method (for
classification), storing the best trained model for estimator_name.
'''
if estimator_name in self._search_states:
state = self._search_states[estimator_name]
if hasattr(state, 'trained_estimator'):
return state.trained_estimator.model
return None
@property
def best_estimator(self):
'''A string indicating the best estimator found.'''
@@ -326,6 +348,10 @@ class AutoML:
A numpy array of shape n * 1 - - each element is a predicted class
label for an instance.
'''
if self._trained_estimator is None:
warnings.warn(
"No estimator is trained. Please run fit with enough budget.")
return None
X_test = self._preprocess(X_test)
y_pred = self._trained_estimator.predict(X_test)
if y_pred.ndim > 1: y_pred = y_pred.flatten()
@@ -402,7 +428,7 @@ class AutoML:
self._X_train_all, self._y_train_all = \
self._transformer.fit_transform(X, y, self._state.task)
self._label_transformer = self._transformer.label_transformer
self._sample_weight_full = self._state.fit_kwargs.get('sample_weight')
if X_val is not None and y_val is not None:
if not (isinstance(X_val, np.ndarray) or
issparse(X_val) or
@@ -446,7 +472,8 @@ class AutoML:
self._X_train_all, self._y_train_all
if issparse(X_train_all):
X_train_all = X_train_all.tocsr()
if self._state.task != 'regression':
if self._state.task != 'regression' and self._state.fit_kwargs.get(
'sample_weight') is None:
# logger.info(f"label {pd.unique(y_train_all)}")
label_set, counts = np.unique(y_train_all, return_counts=True)
# augment rare classes
@@ -562,6 +589,12 @@ class AutoML:
self._state.y_val = (X_train, y_train, X_val, y_val)
if self._split_type == "stratified":
logger.info("Using StratifiedKFold")
assert y_train_all.size >= n_splits, (
f"{n_splits}-fold cross validation"
f" requires input data with at least {n_splits} examples.")
assert y_train_all.size >= 2*n_splits, (
f"{n_splits}-fold cross validation with metric=r2 "
f"requires input data with at least {n_splits*2} examples.")
self._state.kf = RepeatedStratifiedKFold(n_splits=n_splits,
n_repeats=1, random_state=RANDOM_SEED)
else:
@@ -756,6 +789,7 @@ class AutoML:
split_type="stratified",
learner_selector='sample',
hpo_method=None,
verbose=1,
**fit_kwargs):
'''Find a model for a given task
@@ -814,6 +848,8 @@ class AutoML:
y_val: None | a numpy array or a pandas series of validation labels
sample_weight_val: None | a numpy array of the sample weight of
validation data
verbose: int, default=1 | Controls the verbosity, higher means more
messages
**fit_kwargs: Other key word arguments to pass to fit() function of
the searched learners, such sample_weight
'''
@@ -826,6 +862,10 @@ class AutoML:
self._search_states = {} #key: estimator name; value: SearchState
self._random = np.random.RandomState(RANDOM_SEED)
self._learner_selector = learner_selector
old_level = logger.getEffectiveLevel()
self.verbose = verbose
if verbose==0:
logger.setLevel(logging.WARNING)
if self._state.task == 'classification':
self._state.task = get_classification_objective(
len(np.unique(self._y_train_all)))
@@ -836,6 +876,11 @@ class AutoML:
if eval_method == 'auto' or self._state.X_val is not None:
eval_method = self._decide_eval_method(time_budget)
self._state.eval_method = eval_method
if (not mlflow or not mlflow.active_run()) and not logger.handlers:
# Add the console handler.
_ch = logging.StreamHandler()
_ch.setFormatter(logger_formatter)
logger.addHandler(_ch)
logger.info("Evaluation method: {}".format(eval_method))
self._retrain_full = retrain_full and (eval_method == 'holdout' and
@@ -892,6 +937,8 @@ class AutoML:
self._state.n_jobs = n_jobs
self._search()
logger.info("fit succeeded")
if verbose==0:
logger.setLevel(old_level)
def _search(self):
# initialize the search_states
@@ -1004,7 +1051,7 @@ class AutoML:
init_config=None,
search_alg=search_state.search_alg,
time_budget_s=budget_left,
verbose=0, local_dir='logs/tune_results',
verbose=max(self.verbose-1,0), #local_dir='logs/tune_results',
use_ray=False,
)
# warnings.resetwarnings()
@@ -1060,7 +1107,7 @@ class AutoML:
search_state.best_config,
estimator,
search_state.sample_size)
if mlflow is not None:
if mlflow is not None and mlflow.active_run():
with mlflow.start_run(nested=True) as run:
mlflow.log_metric('iter_counter',
self._iter_per_learner[estimator])
@@ -1093,8 +1140,9 @@ class AutoML:
self._state.best_loss))
else:
logger.info(f"no enough budget for learner {estimator}")
self.estimator_list.remove(estimator)
self._estimator_index -= 1
if self._estimator_index is not None:
self.estimator_list.remove(estimator)
self._estimator_index -= 1
if self._retrain_full and best_config_sig and not better and (
self._search_states[self._best_estimator].sample_size ==
self._state.data_size) and (est_retrain_time <=
@@ -1151,7 +1199,11 @@ class AutoML:
stacker = Stacker(estimators, best_m,
n_jobs=self._state.n_jobs,
passthrough=True)
stacker.fit(self._X_train_all, self._y_train_all)
if self._sample_weight_full is not None:
self._state.fit_kwargs[
'sample_weight'] = self._sample_weight_full
stacker.fit(self._X_train_all, self._y_train_all,
**self._state.fit_kwargs)
logger.info(f'ensemble: {stacker}')
self._trained_estimator = stacker
self._trained_estimator.model = stacker
@@ -1189,9 +1241,10 @@ class AutoML:
gap = search_state.best_loss - self._state.best_loss
if gap > 0 and not self._ensemble:
delta_loss = (search_state.best_loss_old -
search_state.best_loss)
search_state.best_loss) or \
search_state.best_loss
delta_time = (search_state.total_time_used -
search_state.time_best_found_old)
search_state.time_best_found_old) or 1e-10
speed = delta_loss / delta_time
try:
estimated_cost = 2*gap/speed

View File

@@ -192,11 +192,13 @@ class DataTransformer:
X = X.copy()
n = X.shape[0]
cat_columns, num_columns = [], []
drop = False
for column in X.columns:
if X[column].dtype.name in ('object', 'category'):
if X[column].nunique() == 1 or X[column].nunique(
dropna=True) == n - X[column].isnull().sum():
X.drop(columns=column, inplace=True)
drop = True
elif X[column].dtype.name == 'category':
current_categories = X[column].cat.categories
if '__NAN__' not in current_categories:
@@ -204,27 +206,33 @@ class DataTransformer:
'__NAN__').fillna('__NAN__')
cat_columns.append(column)
else:
X[column].fillna('__NAN__', inplace=True)
X[column] = X[column].fillna('__NAN__')
cat_columns.append(column)
else:
# print(X[column].dtype.name)
if X[column].nunique(dropna=True) < 2:
X.drop(columns=column, inplace=True)
drop = True
else:
X[column].fillna(np.nan, inplace=True)
X[column] = X[column].fillna(np.nan)
num_columns.append(column)
X = X[cat_columns + num_columns]
if cat_columns:
X[cat_columns] = X[cat_columns].astype('category')
if num_columns:
X_num = X[num_columns]
if drop and np.issubdtype(X_num.columns.dtype, np.integer):
X_num.columns = range(X_num.shape[1])
else: drop = False
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
self.transformer = ColumnTransformer([(
'continuous',
SimpleImputer(missing_values=np.nan, strategy='median'),
num_columns)])
X[num_columns] = self.transformer.fit_transform(X)
X_num.columns)])
X[num_columns] = self.transformer.fit_transform(X_num)
self._cat_columns, self._num_columns = cat_columns, num_columns
self._drop = drop
if task == 'regression':
self.label_transformer = None
@@ -241,7 +249,7 @@ class DataTransformer:
for column in cat_columns:
# print(column, X[column].dtype.name)
if X[column].dtype.name == 'object':
X[column].fillna('__NAN__', inplace=True)
X[column] = X[column].fillna('__NAN__')
elif X[column].dtype.name == 'category':
current_categories = X[column].cat.categories
if '__NAN__' not in current_categories:
@@ -250,6 +258,8 @@ class DataTransformer:
if cat_columns:
X[cat_columns] = X[cat_columns].astype('category')
if num_columns:
X[num_columns].fillna(np.nan, inplace=True)
X[num_columns] = self.transformer.transform(X)
X_num = X[num_columns].fillna(np.nan)
if self._drop:
X_num.columns = range(X_num.shape[1])
X[num_columns] = self.transformer.transform(X_num)
return X

View File

@@ -239,11 +239,8 @@ class LGBMEstimator(BaseEstimator):
else: objective = 'regression'
self.params = {
"n_estimators": int(round(n_estimators)),
"num_leaves": params[
'num_leaves'] if 'num_leaves' in params else int(
round(max_leaves)),
'objective': params[
"objective"] if "objective" in params else objective,
"num_leaves": params.get('num_leaves', int(round(max_leaves))),
'objective': params.get("objective", objective),
'n_jobs': n_jobs,
'learning_rate': float(learning_rate),
'reg_alpha': float(reg_alpha),
@@ -359,18 +356,17 @@ class XGBoostEstimator(SKLearnEstimator):
self._max_leaves = int(round(max_leaves))
self.params = {
'max_leaves': int(round(max_leaves)),
'max_depth': 0,
'grow_policy': params[
"grow_policy"] if "grow_policy" in params else 'lossguide',
'tree_method':tree_method,
'verbosity': 0,
'nthread':n_jobs,
'max_depth': params.get('max_depth', 0),
'grow_policy': params.get("grow_policy", 'lossguide'),
'tree_method': tree_method,
'verbosity': params.get('verbosity', 0),
'nthread': n_jobs,
'learning_rate': float(learning_rate),
'subsample': float(subsample),
'reg_alpha': float(reg_alpha),
'reg_lambda': float(reg_lambda),
'min_child_weight': float(min_child_weight),
'booster': params['booster'] if 'booster' in params else 'gbtree',
'booster': params.get('booster', 'gbtree'),
'colsample_bylevel': float(colsample_bylevel),
'colsample_bytree':float(colsample_bytree),
}
@@ -429,9 +425,8 @@ class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
"n_estimators": int(round(n_estimators)),
'max_leaves': int(round(max_leaves)),
'max_depth': 0,
'grow_policy': params[
"grow_policy"] if "grow_policy" in params else 'lossguide',
'tree_method':tree_method,
'grow_policy': params.get("grow_policy", 'lossguide'),
'tree_method': tree_method,
'verbosity': 0,
'n_jobs': n_jobs,
'learning_rate': float(learning_rate),
@@ -439,7 +434,7 @@ class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
'reg_alpha': float(reg_alpha),
'reg_lambda': float(reg_lambda),
'min_child_weight': float(min_child_weight),
'booster': params['booster'] if 'booster' in params else 'gbtree',
'booster': params.get('booster', 'gbtree'),
'colsample_bylevel': float(colsample_bylevel),
'colsample_bytree': float(colsample_bytree),
}
@@ -544,10 +539,10 @@ class LRL1Classifier(SKLearnEstimator):
**params):
super().__init__(task, **params)
self.params = {
'penalty': 'l1',
'penalty': params.get("penalty", 'l1'),
'tol': float(tol),
'C': float(C),
'solver': 'saga',
'solver': params.get("solver", 'saga'),
'n_jobs': n_jobs,
}
if 'regression' in task:
@@ -573,10 +568,10 @@ class LRL2Classifier(SKLearnEstimator):
**params):
super().__init__(task, **params)
self.params = {
'penalty': 'l2',
'penalty': params.get("penalty", 'l2'),
'tol': float(tol),
'C': float(C),
'solver': 'lbfgs',
'solver': params.get("solver", 'lbfgs'),
'n_jobs': n_jobs,
}
if 'regression' in task:
@@ -625,9 +620,8 @@ class CatBoostEstimator(BaseEstimator):
"n_estimators": n_estimators,
'learning_rate': learning_rate,
'thread_count': n_jobs,
'verbose': False,
'random_seed': params[
"random_seed"] if "random_seed" in params else 10242048,
'verbose': params.get('verbose', False),
'random_seed': params.get("random_seed", 10242048),
}
if 'regression' in task:
from catboost import CatBoostRegressor
@@ -724,7 +718,7 @@ class KNeighborsEstimator(BaseEstimator):
super().__init__(task, **params)
self.params= {
'n_neighbors': int(round(n_neighbors)),
'weights': 'distance',
'weights': params.get('weights', 'distance'),
'n_jobs': n_jobs,
}
if 'regression' in task:

View File

@@ -1,2 +1,2 @@
from .blendsearch import CFO, BlendSearch
from .blendsearch import CFO, BlendSearch, BlendSearchTuner
from .flow2 import FLOW2

View File

@@ -7,6 +7,7 @@ from typing import Dict, Optional, List, Tuple
import numpy as np
import time
import pickle
try:
from ray.tune.suggest import Searcher
from ray.tune.suggest.optuna import OptunaSearch as GlobalSearch
@@ -25,6 +26,8 @@ class BlendSearch(Searcher):
'''class for BlendSearch algorithm
'''
cost_attr = "time_total_s" # cost attribute in result
def __init__(self,
metric: Optional[str] = None,
mode: Optional[str] = None,
@@ -113,8 +116,9 @@ class BlendSearch(Searcher):
self._deadline = config.get('time_budget_s') + time.time()
if 'metric_target' in config:
self._metric_target = config.get('metric_target')
else:
self._metric, self._mode = metric, mode
else:
if metric: self._metric = metric
if mode: self._mode = mode
self._ls.set_search_properties(metric, mode, config)
if self._gs is not None:
self._gs.set_search_properties(metric, mode, config)
@@ -132,26 +136,39 @@ class BlendSearch(Searcher):
self._thread_count = 1 # total # threads created
self._init_used = self._ls.init_config is None
self._trial_proposed_by = {} # trial_id: str -> thread_id: int
self._admissible_min = self._ls.normalize(self._ls.init_config)
self._admissible_max = self._admissible_min.copy()
self._ls_bound_min = self._ls.normalize(self._ls.init_config)
self._ls_bound_max = self._ls_bound_min.copy()
self._gs_admissible_min = self._ls_bound_min.copy()
self._gs_admissible_max = self._ls_bound_max.copy()
self._result = {} # config_signature: tuple -> result: Dict
self._deadline = np.inf
def save(self, checkpoint_path: str):
save_object = (self._metric_target, self._search_thread_pool,
self._thread_count, self._init_used, self._trial_proposed_by,
self._admissible_min, self._admissible_max, self._result,
self._deadline)
save_object = self
with open(checkpoint_path, "wb") as outputFile:
pickle.dump(save_object, outputFile)
def restore(self, checkpoint_path: str):
with open(checkpoint_path, "rb") as inputFile:
save_object = pickle.load(inputFile)
self._metric_target, self._search_thread_pool, \
self._thread_count, self._init_used, self._trial_proposed_by, \
self._admissible_min, self._admissible_max, self._result, \
self._deadline = save_object
state = pickle.load(inputFile)
self._metric_target = state._metric_target
self._search_thread_pool = state._search_thread_pool
self._thread_count = state._thread_count
self._init_used = state._init_used
self._trial_proposed_by = state._trial_proposed_by
self._ls_bound_min = state._ls_bound_min
self._ls_bound_max = state._ls_bound_max
self._gs_admissible_min = state._gs_admissible_min
self._gs_admissible_max = state._gs_admissible_max
self._result = state._result
self._deadline = state._deadline
self._metric, self._mode = state._metric, state._mode
self._points_to_evaluate = state._points_to_evaluate
self._gs = state._gs
self._ls = state._ls
self._resources_per_trial = state._resources_per_trial
self._mem_size = state._mem_size
self._mem_threshold = state._mem_threshold
def restore_from_dir(self, checkpoint_dir: str):
super.restore_from_dir(checkpoint_dir)
@@ -178,25 +195,20 @@ class BlendSearch(Searcher):
# update target metric if improved
if (result[self._metric]-self._metric_target)*self._ls.metric_op<0:
self._metric_target = result[self._metric]
if thread_id: # from local search
# update admissible region
normalized_config = self._ls.normalize(config)
for key in self._admissible_min:
value = normalized_config[key]
if value > self._admissible_max[key]:
self._admissible_max[key] = value
elif value < self._admissible_min[key]:
self._admissible_min[key] = value
elif self._create_condition(result):
if not thread_id and self._create_condition(result):
# thread creator
self._search_thread_pool[self._thread_count] = SearchThread(
self._ls.mode,
self._ls.create(config, result[self._metric], cost=result[
"time_total_s"])
self.cost_attr])
)
thread_id = self._thread_count
self._thread_count += 1
self._update_admissible_region(config, self._ls_bound_min,
self._ls_bound_max)
# reset admissible region to ls bounding box
self._gs_admissible_min.update(self._ls_bound_min)
self._gs_admissible_max.update(self._ls_bound_max)
# cleaner
# logger.info(f"thread {thread_id} in search thread pool="
# f"{thread_id in self._search_thread_pool}")
@@ -204,6 +216,16 @@ class BlendSearch(Searcher):
# local search thread
self._clean(thread_id)
def _update_admissible_region(self, config, admissible_min, admissible_max):
# update admissible region
normalized_config = self._ls.normalize(config)
for key in admissible_min:
value = normalized_config[key]
if value > admissible_max[key]:
admissible_max[key] = value
elif value < admissible_min[key]:
admissible_min[key] = value
def _create_condition(self, result: Dict) -> bool:
''' create thread condition
'''
@@ -231,9 +253,9 @@ class BlendSearch(Searcher):
# f"{self._search_thread_pool[thread_id].converged}")
if self._search_thread_pool[thread_id].converged:
todelete.add(thread_id)
for key in self._admissible_min:
self._admissible_max[key] += self._ls.STEPSIZE
self._admissible_min[key] -= self._ls.STEPSIZE
for key in self._ls_bound_max:
self._ls_bound_max[key] += self._ls.STEPSIZE
self._ls_bound_min[key] -= self._ls.STEPSIZE
for id in todelete:
del self._search_thread_pool[id]
@@ -258,53 +280,67 @@ class BlendSearch(Searcher):
'''
if self._init_used and not self._points_to_evaluate:
choice, backup = self._select_thread()
# logger.debug(f"choice={choice}, backup={backup}")
# print(f"choice={choice}, backup={backup}")
if choice < 0: return None # timeout
self._use_rs = False
config = self._search_thread_pool[choice].suggest(trial_id)
# preliminary check; not checking config validation
skip = self._should_skip(choice, trial_id, config)
if skip:
if choice:
# logger.info(f"skipping choice={choice}, config={config}")
# print(f"skipping choice={choice}, config={config}")
return None
# use rs
# use rs when BO fails to suggest a config
self._use_rs = True
for _, generated in generate_variants(
{'config': self._ls.space}):
config = generated['config']
break
break # get one random config
# logger.debug(f"random config {config}")
skip = self._should_skip(choice, trial_id, config)
if skip: return None
# if not choice: logger.info(config)
if choice or backup == choice or self._valid(config):
# if not choice: print(config)
if choice or self._valid(config):
# LS or valid or no backup choice
self._trial_proposed_by[trial_id] = choice
else: # invalid config proposed by GS
if not self._use_rs:
self._search_thread_pool[choice].on_trial_complete(
trial_id, {}, error=True) # tell GS there is an error
# if not self._use_rs:
# self._search_thread_pool[choice].on_trial_complete(
# trial_id, {}, error=True) # tell GS there is an error
self._use_rs = False
config = self._search_thread_pool[backup].suggest(trial_id)
skip = self._should_skip(backup, trial_id, config)
if skip:
return None
self._trial_proposed_by[trial_id] = backup
choice = backup
# if choice: self._pending.add(choice) # local search thread pending
if not choice:
if choice == backup:
# use CFO's init point
init_config = self._ls.init_config
config = self._ls.complete_config(init_config,
self._ls_bound_min, self._ls_bound_max)
self._trial_proposed_by[trial_id] = choice
else:
config = self._search_thread_pool[backup].suggest(trial_id)
skip = self._should_skip(backup, trial_id, config)
if skip:
return None
self._trial_proposed_by[trial_id] = backup
choice = backup
if not choice: # global search
if self._ls._resource:
# TODO: add resource to config proposed by GS, min or median?
config[self._ls.prune_attr] = self._ls.min_resource
# temporarily relax admissible region for parallel proposals
self._update_admissible_region(config, self._gs_admissible_min,
self._gs_admissible_max)
else:
self._update_admissible_region(config, self._ls_bound_min,
self._ls_bound_max)
self._gs_admissible_min.update(self._ls_bound_min)
self._gs_admissible_max.update(self._ls_bound_max)
self._result[self._ls.config_signature(config)] = {}
else: # use init config
# print("use init config")
init_config = self._points_to_evaluate.pop(
0) if self._points_to_evaluate else self._ls.init_config
if init_config==self._ls.init_config:
config = self._ls.complete_config(init_config,
self._admissible_min, self._admissible_max)
config = self._ls.complete_config(init_config,
self._ls_bound_min, self._ls_bound_max)
# logger.info(f"reset config to {config}")
else: config = init_config
config_signature = self._ls.config_signature(config)
result = self._result.get(config_signature)
if result: # tried before
@@ -340,10 +376,10 @@ class BlendSearch(Searcher):
if choice:
# local search thread
self._clean(choice)
else:
# tell the thread there is an error
self._search_thread_pool[choice].on_trial_complete(
trial_id, {}, error=True)
# else:
# # tell the thread there is an error
# self._search_thread_pool[choice].on_trial_complete(
# trial_id, {}, error=True)
return True
return False
@@ -364,10 +400,10 @@ class BlendSearch(Searcher):
top_thread_id = backup_thread_id = 0
priority1 = priority2 = self._search_thread_pool[0].priority
# logger.debug(f"priority of thread 0={priority1}")
# print(f"priority of thread 0={priority1}, obj_best1={self._search_thread_pool[0].obj_best1}")
for thread_id, thread in self._search_thread_pool.items():
# if thread_id:
# logger.debug(
# print(
# f"priority of thread {thread_id}={thread.priority}")
# logger.debug(
# f"thread {thread_id}.can_suggest={thread.can_suggest}")
@@ -384,18 +420,101 @@ class BlendSearch(Searcher):
def _valid(self, config: Dict) -> bool:
''' config validator
'''
for key in self._admissible_min:
normalized_config = self._ls.normalize(config)
for key in self._gs_admissible_min:
if key in config:
value = config[key]
value = normalized_config[key]
# logger.info(
# f"{key},{value},{self._admissible_min[key]},{self._admissible_max[key]}")
if value<self._admissible_min[
key] or value>self._admissible_max[key]:
if value+self._ls.STEPSIZE<self._gs_admissible_min[
key] or value>self._gs_admissible_max[key]+self._ls.STEPSIZE:
return False
return True
class CFO(BlendSearch):
try:
from nni.tuner import Tuner as NNITuner
from nni.utils import extract_scalar_reward
try:
from ray.tune import (uniform, quniform, choice, randint, qrandint, randn,
qrandn, loguniform, qloguniform)
except:
from ..tune.sample import (uniform, quniform, choice, randint, qrandint, randn,
qrandn, loguniform, qloguniform)
class BlendSearchTuner(BlendSearch, NNITuner):
'''Tuner class for NNI
'''
def receive_trial_result(self, parameter_id, parameters, value,
**kwargs):
'''
Receive trial's final result.
parameter_id: int
parameters: object created by 'generate_parameters()'
value: final metrics of the trial, including default metric
'''
result = {}
for key, value in parameters.items():
result['config/'+key] = value
reward = extract_scalar_reward(value)
result[self._metric] = reward
# if nni does not report training cost,
# using sequence as an approximation.
# if no sequence, using a constant 1
result[self.cost_attr] = value.get(self.cost_attr, value.get(
'sequence', 1))
self.on_trial_complete(str(parameter_id), result)
...
def generate_parameters(self, parameter_id, **kwargs) -> Dict:
'''
Returns a set of trial (hyper-)parameters, as a serializable object
parameter_id: int
'''
return self.suggest(str(parameter_id))
...
def update_search_space(self, search_space):
'''
Tuners are advised to support updating search space at run-time.
If a tuner can only set search space once before generating first hyper-parameters,
it should explicitly document this behaviour.
search_space: JSON object created by experiment owner
'''
config = {}
for key, value in search_space.items():
v = value.get("_value")
_type = value['_type']
if _type == 'choice':
config[key] = choice(v)
elif _type == 'randint':
config[key] = randint(v[0], v[1]-1)
elif _type == 'uniform':
config[key] = uniform(v[0], v[1])
elif _type == 'quniform':
config[key] = quniform(v[0], v[1], v[2])
elif _type == 'loguniform':
config[key] = loguniform(v[0], v[1])
elif _type == 'qloguniform':
config[key] = qloguniform(v[0], v[1], v[2])
elif _type == 'normal':
config[key] = randn(v[1], v[2])
elif _type == 'qnormal':
config[key] = qrandn(v[1], v[2], v[3])
else:
raise ValueError(
f'unsupported type in search_space {_type}')
self._ls.set_search_properties(None, None, config)
if self._gs is not None:
self._gs.set_search_properties(None, None, config)
self._init_search()
except:
class BlendSearchTuner(BlendSearch): pass
class CFO(BlendSearchTuner):
''' class for CFO algorithm
'''
@@ -418,3 +537,89 @@ class CFO(BlendSearch):
''' create thread condition
'''
return len(self._search_thread_pool) < 2
def create_next(client):
'''A stateless API for HPO
'''
state = client.get_state()
setting = client.get_settings_dict()
if state is None:
# first time call
try:
from ray.tune import (uniform, quniform, choice, randint, qrandint, randn,
qrandn, loguniform, qloguniform)
from ray.tune.trial import Trial
except:
from ..tune.sample import (uniform, quniform, choice, randint, qrandint, randn,
qrandn, loguniform, qloguniform)
from ..tune.trial import Trial
method = setting.get('method', 'BlendSearch')
mode = client.get_optimization_mode()
if mode == 'minimize':
mode = 'min'
elif mode == 'maximize':
mode = 'max'
metric = client.get_primary_metric()
hp_space = client.get_hyperparameter_space_dict()
space = {}
for key, value in hp_space.items():
t = value["type"]
if t == 'continuous':
space[key] = uniform(value["min_val"], value["max_val"])
elif t == 'discrete':
space[key] = choice(value["values"])
elif t == 'integral':
space[key] = randint(value["min_val"], value["max_val"])
elif t == 'quantized_continuous':
space[key] = quniform(value["min_val"], value["max_val"],
value["step"])
init_config = setting.get('init_config', None)
if init_config:
points_to_evaluate = [init_config]
else:
points_to_evaluate = None
cat_hp_cost = setting.get('cat_hp_cost', None)
if method == 'BlendSearch':
Algo = BlendSearch
elif method == 'CFO':
Algo = CFO
algo = Algo(
mode=mode,
metric=metric,
space=space,
points_to_evaluate=points_to_evaluate,
cat_hp_cost=cat_hp_cost,
)
time_budget_s = setting.get('time_budget_s', None)
if time_budget_s:
algo._deadline = time_budget_s + time.time()
config2trialid = {}
else:
algo = state['algo']
config2trialid = state['config2trialid']
# update finished trials
trials_completed = []
for trial in client.get_trials():
if trial.end_time is not None:
signature = algo._ls.config_signature(trial.hp_sample)
if not algo._result[signature]:
trials_completed.append((trial.end_time, trial))
trials_completed.sort()
for t in trials_completed:
end_time, trial = t
trial_id = config2trialid[trial.hp_sample]
result = {}
result[algo.metric] = trial.metrics[algo.metric].values[-1]
result[algo.cost_attr] = (end_time - trial.start_time).total_seconds()
for key, value in trial.hp_sample.items():
result['config/'+key] = value
algo.on_trial_complete(trial_id, result=result)
# propose new trial
trial_id = Trial.generate_id()
config = algo.suggest(trial_id)
if config:
config2trialid[config] = trial_id
client.launch_trial(config)
client.update_state({'algo': algo, 'config2trialid': config2trialid})

View File

@@ -9,9 +9,10 @@ try:
from ray.tune.suggest import Searcher
from ray.tune.suggest.variant_generator import generate_variants
from ray.tune import sample
from ray.tune.utils.util import flatten_dict, unflatten_dict
except ImportError:
from .suggestion import Searcher
from .variant_generator import generate_variants
from .variant_generator import generate_variants, flatten_dict, unflatten_dict
from ..tune import sample
@@ -86,6 +87,7 @@ class FLOW2(Searcher):
elif mode == "min":
self.metric_op = 1.
self.space = space or {}
self.space = flatten_dict(self.space, prevent_delimiter=True)
self._random = np.random.RandomState(seed)
self._seed = seed
if not init_config:
@@ -95,7 +97,8 @@ class FLOW2(Searcher):
"consider providing init values for cost-related hps via "
"'init_config'."
)
self.init_config = self.best_config = init_config
self.init_config = init_config
self.best_config = flatten_dict(init_config)
self.cat_hp_cost = cat_hp_cost
self.prune_attr = prune_attr
self.min_resource = min_resource
@@ -121,21 +124,21 @@ class FLOW2(Searcher):
self._unordered_cat_hp = {}
self._cat_hp_cost = {}
for key, domain in self.space.items():
assert not isinstance(domain, dict), \
key+"'s domain is grid search which is not supported in FLOW2."
assert not (isinstance(domain, dict) and 'grid_search' in domain
), key+"'s domain is grid search which is not supported in FLOW2."
if callable(getattr(domain, 'get_sampler', None)):
self._tunable_keys.append(key)
sampler = domain.get_sampler()
if isinstance(sampler, sample.Quantized):
sampler_inner = sampler.get_sampler()
if str(sampler_inner) == 'Uniform':
self._step_lb = min(
self._step_lb, sampler.q/(domain.upper-domain.lower))
elif isinstance(domain, sample.Integer) and str(
sampler) == 'Uniform':
self._step_lb = min(
self._step_lb, 1.0/(domain.upper-domain.lower))
elif isinstance(domain, sample.Categorical):
# if isinstance(sampler, sample.Quantized):
# sampler_inner = sampler.get_sampler()
# if str(sampler_inner) == 'Uniform':
# self._step_lb = min(
# self._step_lb, sampler.q/(domain.upper-domain.lower))
# elif isinstance(domain, sample.Integer) and str(
# sampler) == 'Uniform':
# self._step_lb = min(
# self._step_lb, 1.0/(domain.upper-domain.lower))
if isinstance(domain, sample.Categorical):
cat_hp_cost = self.cat_hp_cost
if cat_hp_cost and key in cat_hp_cost:
cost = np.array(cat_hp_cost[key])
@@ -146,7 +149,7 @@ class FLOW2(Searcher):
for i, choice in enumerate(l):
d[choice] = i
self._ordered_cat_hp[key] = (l, d)
self._step_lb = min(self._step_lb, 1.0/len(l))
# self._step_lb = min(self._step_lb, 1.0/len(l))
elif all(isinstance(x, int) or isinstance(x, float)
for x in domain.categories):
l = sorted(domain.categories)
@@ -154,10 +157,10 @@ class FLOW2(Searcher):
for i, choice in enumerate(l):
d[choice] = i
self._ordered_choice_hp[key] = (l, d)
self._step_lb = min(self._step_lb, 1.0/len(l))
# self._step_lb = min(self._step_lb, 1.0/len(l))
else:
self._unordered_cat_hp[key] = l = len(domain.categories)
self._step_lb = min(self._step_lb, 1.0/l)
# self._step_lb = min(self._step_lb, 1.0/l)
if str(sampler) != 'Normal':
self._bounded_keys.append(key)
self._space_keys = list(self.space.keys())
@@ -171,7 +174,7 @@ class FLOW2(Searcher):
# logger.info(self._resource)
else: self._resource = None
self.incumbent = {}
self.incumbent = self.normalize(self.init_config)
self.incumbent = self.normalize(self.best_config) # flattened
self.best_obj = self.cost_incumbent = None
self.dim = len(self._tunable_keys) # total # tunable dimensions
self._direction_tried = None
@@ -190,6 +193,8 @@ class FLOW2(Searcher):
self._K = 0
self._iter_best_config = self.trial_count = 1
self._reset_times = 0
# record intermediate trial cost
self._trial_cost = {}
@property
def step_lower_bound(self) -> float:
@@ -237,14 +242,15 @@ class FLOW2(Searcher):
''' generate a complete config from the partial config input
add minimal resource to config if available
'''
if self._reset_times: # not the first time, use random gaussian
if self._reset_times and partial_config==self.init_config:
# not the first time to complete init_config, use random gaussian
normalized = self.normalize(partial_config)
for key in normalized:
# don't change unordered cat choice
if key not in self._unordered_cat_hp:
if upper and lower:
u, l = upper[key], lower[key]
gauss_std = u-l
gauss_std = u-l or self.STEPSIZE
# allowed bound
u += self.STEPSIZE
l -= self.STEPSIZE
@@ -259,27 +265,28 @@ class FLOW2(Searcher):
# use best config for unordered cat choice
config = self.denormalize(normalized)
else:
# first time init_config, or other configs, take as is
config = partial_config.copy()
if partial_config == self.init_config: self._reset_times += 1
config = flatten_dict(config)
for key, value in self.space.items():
if key not in config:
config[key] = value
logger.debug(f'before random {config}')
# logger.debug(f'before random {config}')
for _, generated in generate_variants({'config': config}):
config = generated['config']
break
logger.debug(f'after random {config}')
# logger.debug(f'after random {config}')
if self._resource:
config[self.prune_attr] = self.min_resource
self._reset_times += 1
return config
return unflatten_dict(config)
def create(self, init_config: Dict, obj: float, cost: float) -> Searcher:
flow2 = FLOW2(init_config, self.metric, self.mode, self._cat_hp_cost,
self.space, self.prune_attr, self.min_resource,
self.max_resource, self.resource_multiple_factor,
self._seed+1)
unflatten_dict(self.space), self.prune_attr,
self.min_resource, self.max_resource,
self.resource_multiple_factor, self._seed+1)
flow2.best_obj = obj * self.metric_op # minimize internally
flow2.cost_incumbent = cost
return flow2
@@ -288,7 +295,7 @@ class FLOW2(Searcher):
''' normalize each dimension in config to [0,1]
'''
config_norm = {}
for key, value in config.items():
for key, value in flatten_dict(config).items():
if key in self.space:
# domain: sample.Categorical/Integer/Float/Function
domain = self.space[key]
@@ -299,10 +306,10 @@ class FLOW2(Searcher):
# normalize categorical
if key in self._ordered_cat_hp:
l, d = self._ordered_cat_hp[key]
config_norm[key] = d[value]/len(l)
config_norm[key] = (d[value]+0.5)/len(l) # center
elif key in self._ordered_choice_hp:
l, d = self._ordered_choice_hp[key]
config_norm[key] = d[value]/len(l)
config_norm[key] = (d[value]+0.5)/len(l) # center
elif key in self.incumbent:
config_norm[key] = self.incumbent[
key] if value == self.best_config[
@@ -402,6 +409,7 @@ class FLOW2(Searcher):
self._metric = metric
if mode:
assert mode in ["min", "max"], "`mode` must be 'min' or 'max'."
self._mode = mode
if mode == "max":
self.metric_op = -1.
elif mode == "min":
@@ -422,7 +430,7 @@ class FLOW2(Searcher):
obj = result.get(self._metric)
if obj:
obj *= self.metric_op
if obj < self.best_obj:
if self.best_obj is None or obj < self.best_obj:
self.best_obj, self.best_config = obj, self._configs[
trial_id]
self.incumbent = self.normalize(self.best_config)
@@ -433,7 +441,8 @@ class FLOW2(Searcher):
self._cost_complete4incumbent = 0
self._num_allowed4incumbent = 2 * self.dim
self._proposed_by.clear()
if self._K > 0:
if self._K > 0:
# self._oldK must have been set when self._K>0
self.step *= np.sqrt(self._K/self._oldK)
if self.step > self.step_ub: self.step = self.step_ub
self._iter_best_config = self.trial_count
@@ -442,7 +451,8 @@ class FLOW2(Searcher):
if proposed_by == self.incumbent:
# proposed by current incumbent and no better
self._num_complete4incumbent += 1
cost = result.get(self.cost_attr)
cost = result.get(
self.cost_attr) if result else self._trial_cost.get(trial_id)
if cost: self._cost_complete4incumbent += cost
if self._num_complete4incumbent >= 2*self.dim and \
self._num_allowed4incumbent == 0:
@@ -469,7 +479,7 @@ class FLOW2(Searcher):
obj = result.get(self._metric)
if obj:
obj *= self.metric_op
if obj < self.best_obj:
if self.best_obj is None or obj < self.best_obj:
self.best_obj = obj
config = self._configs[trial_id]
if self.best_config != config:
@@ -483,6 +493,9 @@ class FLOW2(Searcher):
self._num_allowed4incumbent = 2 * self.dim
self._proposed_by.clear()
self._iter_best_config = self.trial_count
cost = result.get(self.cost_attr)
# record the cost in case it is pruned and cost info is lost
self._trial_cost[trial_id] = cost
def rand_vector_unit_sphere(self, dim) -> np.ndarray:
vec = self._random.normal(0, 1, dim)
@@ -520,12 +533,12 @@ class FLOW2(Searcher):
self._direction_tried = self.rand_vector_unit_sphere(
self.dim) * self.step
for i, key in enumerate(self._tunable_keys):
move[key] += self._direction_tried[i]
move[key] += self._direction_tried[i]
self._project(move)
config = self.denormalize(move)
self._proposed_by[trial_id] = self.incumbent
self._configs[trial_id] = config
return config
return unflatten_dict(config)
def _project(self, config):
''' project normalized config in the feasible region and set prune_attr
@@ -545,6 +558,7 @@ class FLOW2(Searcher):
def config_signature(self, config) -> tuple:
''' return the signature tuple of a config
'''
config = flatten_dict(config)
value_list = []
for key in self._space_keys:
if key in config:

View File

@@ -20,12 +20,14 @@ class SearchThread:
'''
cost_attr = 'time_total_s'
eps = 1e-10
def __init__(self, mode: str = "min",
search_alg: Optional[Searcher] = None):
''' When search_alg is omitted, use local search FLOW2
'''
self._search_alg = search_alg
self._is_ls = isinstance(search_alg, FLOW2)
self._mode = mode
self._metric_op = 1 if mode=='min' else -1
self.cost_best = self.cost_last = self.cost_total = self.cost_best1 = \
@@ -36,6 +38,7 @@ class SearchThread:
# eci: expected cost for improvement
self.eci = self.cost_best
self.priority = self.speed = 0
self._init_config = True
def suggest(self, trial_id: str) -> Optional[Dict]:
''' use the suggest() of the underlying search algorithm
@@ -70,7 +73,7 @@ class SearchThread:
# calculate speed; use 0 for invalid speed temporarily
if self.obj_best2 > self.obj_best1:
self.speed = (self.obj_best2 - self.obj_best1) / (
self.cost_total - self.cost_best2)
self.cost_total - self.cost_best2 + self.eps)
else: self.speed = 0
def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None,
@@ -81,7 +84,12 @@ class SearchThread:
if not hasattr(self._search_alg, '_ot_trials') or (not error and
trial_id in self._search_alg._ot_trials):
# optuna doesn't handle error
self._search_alg.on_trial_complete(trial_id, result, error)
if self._is_ls or not self._init_config:
self._search_alg.on_trial_complete(trial_id, result, error)
else:
# init config is not proposed by self._search_alg
# under this thread
self._init_config = False
if result:
if self.cost_attr in result:
self.cost_last = result[self.cost_attr]

View File

@@ -28,6 +28,46 @@ from ..tune.sample import Categorical, Domain, Function
logger = logging.getLogger(__name__)
def flatten_dict(dt, delimiter="/", prevent_delimiter=False):
dt = copy.deepcopy(dt)
if prevent_delimiter and any(delimiter in key for key in dt):
# Raise if delimiter is any of the keys
raise ValueError(
"Found delimiter `{}` in key when trying to flatten array."
"Please avoid using the delimiter in your specification.")
while any(isinstance(v, dict) for v in dt.values()):
remove = []
add = {}
for key, value in dt.items():
if isinstance(value, dict):
for subkey, v in value.items():
if prevent_delimiter and delimiter in subkey:
# Raise if delimiter is in any of the subkeys
raise ValueError(
"Found delimiter `{}` in key when trying to "
"flatten array. Please avoid using the delimiter "
"in your specification.")
add[delimiter.join([key, str(subkey)])] = v
remove.append(key)
dt.update(add)
for k in remove:
del dt[k]
return dt
def unflatten_dict(dt, delimiter="/"):
"""Unflatten dict. Does not support unflattening lists."""
dict_type = type(dt)
out = dict_type()
for key, val in dt.items():
path = key.split(delimiter)
item = out
for k in path[:-1]:
item = item.setdefault(k, dict_type())
item[path[-1]] = val
return out
class TuneError(Exception):
"""General error class raised by ray.tune."""
pass

View File

@@ -118,6 +118,7 @@ class TrainingLogWriter(object):
def close(self):
self.file.close()
self.file = None # for pickle
class TrainingLogReader(object):
@@ -141,6 +142,7 @@ class TrainingLogReader(object):
def close(self):
self.file.close()
self.file = None # for pickle
def get_record(self, record_id) -> TrainingLogRecord:
if self.file is None:

View File

@@ -6,6 +6,7 @@ The API is compatible with ray tune.
Example:
```python
# require: pip install flaml[blendsearch]
from flaml import tune
import time
@@ -42,6 +43,7 @@ print(analysis.best_config) # the best config
Or, using ray tune's API:
```python
# require: pip install flaml[blendsearch] ray[tune]
from ray import tune as raytune
from flaml import CFO, BlendSearch
import time
@@ -146,6 +148,7 @@ based on optimism in face of uncertainty.
Example:
```python
# require: pip install flaml[blendsearch]
from flaml import BlendSearch
tune.run(...
search_alg = BlendSearch(points_to_evaluate=[init_config]),
@@ -156,6 +159,12 @@ Recommended scenario: cost-related hyperparameters exist, a low-cost
initial point is known, and the search space is complex such that local search
is prone to be stuck at local optima.
An example of using BlendSearch with NNI can be seen in [test](https://github.com/microsoft/FLAML/tree/main/test/nni), CFO can be used with NNI as well in a similar manner. To run the example, first make sure you have [NNI](https://nni.readthedocs.io/en/stable/) installed, then run:
```shell
$nnictl create --config ./config.yml
```
For more technical details, please check our papers.
* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.
@@ -169,7 +178,7 @@ For more technical details, please check our papers.
}
```
* Economical Hyperparameter Optimization With Blended Search Strategy. Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. To appear in ICLR 2021.
```
@inproceedings{wang2021blendsearch,

View File

@@ -17,6 +17,8 @@ logger = logging.getLogger(__name__)
_use_ray = True
_runner = None
_verbose = 0
_running_trial = None
_training_iteration = 0
class ExperimentAnalysis(EA):
@@ -68,6 +70,8 @@ def report(_metric=None, **kwargs):
'''
global _use_ray
global _verbose
global _running_trial
global _training_iteration
if _use_ray:
from ray import tune
return tune.report(_metric, **kwargs)
@@ -77,6 +81,12 @@ def report(_metric=None, **kwargs):
logger.info(f"result: {kwargs}")
if _metric: result['_default_anonymous_metric'] = _metric
trial = _runner.running_trial
if _running_trial == trial:
_training_iteration += 1
else:
_training_iteration = 0
_running_trial = trial
result["training_iteration"] = _training_iteration
result['config'] = trial.config
for key, value in trial.config.items():
result['config/'+key] = value
@@ -195,7 +205,7 @@ def run(training_function,
0 = silent, 1 = only status updates, 2 = status and brief trial
results, 3 = status and detailed trial results. Defaults to 2.
local_dir: A string of the local dir to save ray logs if ray backend is
used.
used; or a local dir to save the tuning log.
num_samples: An integer of the number of configs to try. Defaults to 1.
resources_per_trial: A dictionary of the hardware resources to allocate
per trial, e.g., `{'mem': 1024**3}`. When not using ray backend,
@@ -211,9 +221,18 @@ def run(training_function,
_verbose = verbose
if verbose > 0:
import os
os.makedirs(local_dir, exist_ok=True)
logger.addHandler(logging.FileHandler(local_dir+'/tune_'+str(
datetime.datetime.now())+'.log'))
if local_dir:
os.makedirs(local_dir, exist_ok=True)
logger.addHandler(logging.FileHandler(local_dir+'/tune_'+str(
datetime.datetime.now()).replace(':', '-')+'.log'))
elif not logger.handlers:
# Add the console handler.
_ch = logging.StreamHandler()
logger_formatter = logging.Formatter(
'[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s',
'%m-%d %H:%M:%S')
_ch.setFormatter(logger_formatter)
logger.addHandler(_ch)
if verbose<=2:
logger.setLevel(logging.INFO)
else:

View File

@@ -1 +1 @@
__version__ = "0.2.3"
__version__ = "0.2.9"

View File

@@ -1,788 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses the Huggingface transformers library to finetune a transformer model.\n",
"\n",
"**Requirements.** This notebook has additional requirements:\n",
"\n",
"```bash\n",
"pip install -r transformers_requirements.txt\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"MODEL_CHECKPOINT = \"distilbert-base-uncased\""
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input_ids': [101, 2023, 2003, 1037, 3231, 102], 'attention_mask': [1, 1, 1, 1, 1, 1]}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer(\"this is a test\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"TASK = \"cola\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import datasets"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (/home/amin/.cache/huggingface/datasets/glue/cola/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4)\n",
"/home/amin/miniconda/lib/python3.7/site-packages/torch/cuda/__init__.py:52: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)\n",
" return torch._C._cuda_getDeviceCount() > 0\n"
]
}
],
"source": [
"raw_dataset = datasets.load_dataset(\"glue\", TASK)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# define tokenization function used to process data\n",
"COLUMN_NAME = \"sentence\"\n",
"def tokenize(examples):\n",
" return tokenizer(examples[COLUMN_NAME], truncation=True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5bd7b23a478043eaaf6e14e119143fcd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=9.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d7b648c2dbdc4fb9907e43da7db8af9a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "36a9d6e62dbe462d94b1769f36fbd0f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"encoded_dataset = raw_dataset.map(tokenize, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" 'idx': 0,\n",
" 'input_ids': [101,\n",
" 2256,\n",
" 2814,\n",
" 2180,\n",
" 1005,\n",
" 1056,\n",
" 4965,\n",
" 2023,\n",
" 4106,\n",
" 1010,\n",
" 2292,\n",
" 2894,\n",
" 1996,\n",
" 2279,\n",
" 2028,\n",
" 2057,\n",
" 16599,\n",
" 1012,\n",
" 102],\n",
" 'label': 1,\n",
" 'sentence': \"Our friends won't buy this analysis, let alone the next one we propose.\"}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"encoded_dataset[\"train\"][0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoModelForSequenceClassification"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35b76e51b5c8406fae416fcdc3dd885e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=267967963.0, style=ProgressStyle(descri…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_transform.bias', 'vocab_layer_norm.weight', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias']\n",
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n",
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'pre_classifier.bias', 'classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"NUM_LABELS = 2\n",
"model = AutoModelForSequenceClassification.from_pretrained(MODEL_CHECKPOINT, num_labels=NUM_LABELS)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DistilBertForSequenceClassification(\n",
" (distilbert): DistilBertModel(\n",
" (embeddings): Embeddings(\n",
" (word_embeddings): Embedding(30522, 768, padding_idx=0)\n",
" (position_embeddings): Embedding(512, 768)\n",
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (transformer): Transformer(\n",
" (layer): ModuleList(\n",
" (0): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (1): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (2): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (3): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (4): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (5): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (pre_classifier): Linear(in_features=768, out_features=768, bias=True)\n",
" (classifier): Linear(in_features=768, out_features=2, bias=True)\n",
" (dropout): Dropout(p=0.2, inplace=False)\n",
")"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Metric"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"metric = datasets.load_metric(\"glue\", TASK)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Metric(name: \"glue\", features: {'predictions': Value(dtype='int64', id=None), 'references': Value(dtype='int64', id=None)}, usage: \"\"\"\n",
"Compute GLUE evaluation metric associated to each GLUE dataset.\n",
"Args:\n",
" predictions: list of translations to score.\n",
" Each translation should be tokenized into a list of tokens.\n",
" references: list of lists of references for each translation.\n",
" Each reference should be tokenized into a list of tokens.\n",
"Returns: depending on the GLUE subset, one or several of:\n",
" \"accuracy\": Accuracy\n",
" \"f1\": F1\n",
" \"pearson\": Pearson Correlation\n",
" \"spearmanr\": Spearman Correlation\n",
" \"matthews_correlation\": Matthew Correlation\n",
"\"\"\", stored examples: 0)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"metric"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"def compute_metrics(eval_pred):\n",
" predictions, labels = eval_pred\n",
" predictions = np.argmax(predictions, axis=1)\n",
" return metric.compute(predictions=predictions, references=labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training (aka Finetuning)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"from transformers import Trainer\n",
"from transformers import TrainingArguments"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"args = TrainingArguments(\n",
" output_dir='output',\n",
" do_eval=True,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"trainer = Trainer(\n",
" model=model,\n",
" args=args,\n",
" train_dataset=encoded_dataset[\"train\"],\n",
" eval_dataset=encoded_dataset[\"validation\"],\n",
" tokenizer=tokenizer,\n",
" compute_metrics=compute_metrics,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div>\n",
" <style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" </style>\n",
" \n",
" <progress value='322' max='3207' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [ 322/3207 02:51 < 25:41, 1.87 it/s, Epoch 0.30/3]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trainer.train()"
]
},
{
"source": [
"## Hyperparameter Optimization\n",
"\n",
"`flaml.tune` is a module for economical hyperparameter tuning. It frees users from manually tuning many hyperparameters for a software, such as machine learning training procedures. \n",
"The API is compatible with ray tune.\n",
"\n",
"### Step 1. Define training method\n",
"\n",
"We define a function `train_distilbert(config: dict)` that accepts a hyperparameter configuration dict `config`. The specific configs will be generated by flaml's search algorithm in a given search space.\n"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import flaml\n",
"\n",
"def train_distilbert(config: dict):\n",
"\n",
" # Define tokenize method\n",
" tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)\n",
" def tokenize(examples):\n",
" return tokenizer(examples[COLUMN_NAME], truncation=True)\n",
" # Load CoLA dataset and apply tokenizer\n",
" cola_raw = load_dataset(\"glue\", TASK)\n",
" cola_encoded = cola_raw.map(tokenize, batched=True)\n",
" # QUESTION: Write processed data to disk?\n",
" train_dataset, eval_dataset = cola_encoded[\"train\"], cola_encoded[\"validation\"]\n",
"\n",
" model = AutoModelForSequenceClassification.from_pretrained(\n",
" MODEL_CHECKPOINT, num_labels=NUM_LABELS\n",
" )\n",
"\n",
" metric = load_metric(\"glue\", TASK)\n",
"\n",
" training_args = TrainingArguments(\n",
" output_dir='.',\n",
" do_eval=False,\n",
" **config,\n",
" )\n",
"\n",
" trainer = Trainer(\n",
" model,\n",
" training_args,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=eval_dataset,\n",
" tokenizer=tokenizer,\n",
" compute_metrics=compute_metrics,\n",
" )\n",
"\n",
" # train model\n",
" trainer.train()\n",
"\n",
" # evaluate model\n",
" eval_output = trainer.evaluate()\n",
"\n",
" # report the metric to optimize\n",
" flaml.tune.report(\n",
" loss=eval_output[\"eval_loss\"],\n",
" matthews_correlation=eval_output[\"eval_matthews_correlation\"],\n",
" )"
]
},
{
"source": [
"### Step 2. Define the search\n",
"\n",
"We are now ready to define our search. This includes:\n",
"\n",
"- The `search_space` for our hyperparameters\n",
"- The metric and the mode ('max' or 'min') for optimization\n",
"- The constraints (`n_cpus`, `n_gpus`, `num_samples`, and `time_budget_s`)"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max_num_epoch = 4\n",
"search_space = {\n",
" # You can mix constants with search space objects.\n",
" \"num_train_epochs\": flaml.tune.loguniform(1, max_num_epoch),\n",
" \"learning_rate\": flaml.tune.loguniform(1e-6, 1e-4),\n",
" \"adam_epsilon\": flaml.tune.loguniform(1e-9, 1e-7),\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# optimization objective\n",
"HP_METRIC, MODE = \"matthews_correlation\", \"max\"\n",
"\n",
"# resources\n",
"num_cpus = 2\n",
"num_gpus = 2\n",
"\n",
"# constraints\n",
"num_samples = -1 # number of trials, -1 means unlimited\n",
"time_budget_s = 3600 # time budget in seconds"
]
},
{
"source": [
"### Step 3. Launch with `flaml.tune.run`\n",
"\n",
"We are now ready to laungh the tuning using `flaml.tune.run`:"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"import ray\n",
"start_time = time.time()\n",
"ray.init(num_cpus=num_cpus, num_gpus=num_gpus)\n",
"\n",
"print(\"Tuning started...\")\n",
"analysis = flaml.tune.run(\n",
" train_distilbert,\n",
" config=search_space,\n",
" init_config={\n",
" \"num_train_epochs\": 1,\n",
" },\n",
" metric=HP_METRIC,\n",
" mode=MODE,\n",
" report_intermediate_result=False,\n",
" # uncomment the following if report_intermediate_result = True\n",
" # max_resource=max_num_epoch, min_resource=1,\n",
" resources_per_trial={\"gpu\": 1},\n",
" local_dir='logs/',\n",
" num_samples=num_samples,\n",
" time_budget_s=time_budget_s,\n",
" use_ray=True,\n",
")\n",
"\n",
"ray.shutdown()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_trial = analysis.get_best_trial(HP_METRIC, MODE, \"all\")\n",
"metric = best_trial.metric_analysis[HP_METRIC][MODE]\n",
"print(f\"n_trials={len(analysis.trials)}\")\n",
"print(f\"time={time.time()-start_time}\")\n",
"print(f\"Best model eval {HP_METRIC}: {metric:.4f}\")\n",
"print(f\"Best model parameters: {best_trial.config}\")\n"
]
},
{
"source": [
"## Next Steps\n",
"\n",
"Notice that we only reported the metric with `flaml.tune.report` at the end of full training loop. It is possible to enable reporting of intermediate performance - allowing early stopping - as follows:\n",
"\n",
"- Huggingface provides _Callbacks_ which can be used to insert the `flaml.tune.report` call inside the training loop\n",
"- Make sure to set `do_eval=True` in the `TrainingArguments` provided to `Trainer` and adjust theevaluation frequency accordingly"
],
"cell_type": "markdown",
"metadata": {}
}
],
"metadata": {
"kernelspec": {
"display_name": "flaml",
"language": "python",
"name": "flaml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

969
notebook/flaml_automl.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +0,0 @@
torch
transformers
datasets
ipywidgets

View File

@@ -20,7 +20,6 @@ install_requires = [
"scipy>=1.4.1",
"catboost>=0.23",
"scikit-learn>=0.23.2",
"optuna==2.3.0"
],
@@ -48,14 +47,21 @@ setuptools.setup(
"coverage>=5.3",
"xgboost<1.3",
"rgf-python",
"optuna==2.3.0",
],
"blendsearch": [
"optuna==2.3.0"
],
"ray": [
"ray[tune]==1.1.0",
"ray[tune]==1.2.0",
"pyyaml<5.3.1",
],
"azureml": [
"azureml-mlflow"
"azureml-mlflow",
],
"nni": [
"nni",
]
},
classifiers=[
"Programming Language :: Python :: 3",

250
test/hf/test_deberta.py Normal file
View File

@@ -0,0 +1,250 @@
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
'''
import time
import numpy as np
try:
import ray
from datasets import (
load_dataset,
load_metric,
)
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments,
)
MODEL_CHECKPOINT = "microsoft/deberta-base"
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
max_seq_length=128
overwrite_cache=False
pad_to_max_length=True
padding = "max_length"
TASK = "qnli"
# HP_METRIC, MODE = "loss", "min"
HP_METRIC, MODE = "accuracy", "max"
sentence1_key, sentence2_key = task_to_keys[TASK]
# Define tokenize method
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
def tokenize(examples):
args = (
(examples[sentence1_key],) if sentence2_key is None else (
examples[sentence1_key], examples[sentence2_key])
)
return tokenizer(*args, padding=padding, max_length=max_seq_length,
truncation=True)
except:
print("pip install torch transformers datasets flaml[blendsearch,ray]")
import logging
logger = logging.getLogger(__name__)
import os
os.makedirs('logs', exist_ok=True)
logger.addHandler(logging.FileHandler('logs/tune_deberta.log'))
logger.setLevel(logging.INFO)
import flaml
def train_deberta(config: dict):
# Load dataset and apply tokenizer
data_raw = load_dataset("glue", TASK)
data_encoded = data_raw.map(tokenize, batched=True)
train_dataset, eval_dataset = data_encoded["train"], data_encoded["validation"]
NUM_LABELS = len(train_dataset.features["label"].names)
metric = load_metric("glue", TASK)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_CHECKPOINT, num_labels=NUM_LABELS
)
training_args = TrainingArguments(
output_dir='.',
do_eval=False,
disable_tqdm=True,
logging_steps=20000,
save_total_limit=0,
fp16=True,
**config,
)
trainer = Trainer(
model,
training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# train model
trainer.train()
# evaluate model
eval_output = trainer.evaluate()
flaml.tune.report(
loss=eval_output["eval_loss"],
accuracy=eval_output["eval_accuracy"],
)
try:
from azureml.core import Run
run = Run.get_context()
run.log('accuracy', eval_output["eval_accuracy"])
run.log('loss', eval_output["eval_loss"])
run.log('config', config)
except: pass
def _test_deberta(method='BlendSearch'):
max_num_epoch = 100
num_samples = -1
time_budget_s = 3600
search_space = {
# You can mix constants with search space objects.
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
"learning_rate": flaml.tune.loguniform(3e-5, 1.5e-4),
"weight_decay": flaml.tune.uniform(0, 0.3),
"per_device_train_batch_size": flaml.tune.choice([16, 32, 64, 128]),
"seed": flaml.tune.choice([12, 22, 33, 42]),
}
start_time = time.time()
ray.init(num_cpus=4, num_gpus=4)
if 'ASHA' == method:
algo = None
elif 'BOHB' == method:
from ray.tune.schedulers import HyperBandForBOHB
from ray.tune.suggest.bohb import tuneBOHB
algo = tuneBOHB(max_concurrent=4)
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
elif 'Optuna' == method:
from ray.tune.suggest.optuna import OptunaSearch
algo = OptunaSearch()
elif 'CFO' == method:
from flaml import CFO
algo = CFO(points_to_evaluate=[{
"num_train_epochs": 1,
"per_device_train_batch_size": 128,
}])
elif 'BlendSearch' == method:
from flaml import BlendSearch
algo = BlendSearch(points_to_evaluate=[{
"num_train_epochs": 1,
"per_device_train_batch_size": 128,
}])
elif 'Dragonfly' == method:
from ray.tune.suggest.dragonfly import DragonflySearch
algo = DragonflySearch()
elif 'SkOpt' == method:
from ray.tune.suggest.skopt import SkOptSearch
algo = SkOptSearch()
elif 'Nevergrad' == method:
from ray.tune.suggest.nevergrad import NevergradSearch
import nevergrad as ng
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
elif 'ZOOpt' == method:
from ray.tune.suggest.zoopt import ZOOptSearch
algo = ZOOptSearch(budget=num_samples)
elif 'Ax' == method:
from ray.tune.suggest.ax import AxSearch
algo = AxSearch(max_concurrent=3)
elif 'HyperOpt' == method:
from ray.tune.suggest.hyperopt import HyperOptSearch
algo = HyperOptSearch()
scheduler = None
if method != 'BOHB':
from ray.tune.schedulers import ASHAScheduler
scheduler = ASHAScheduler(
max_t=max_num_epoch,
grace_period=1)
scheduler = None
analysis = ray.tune.run(
train_deberta,
metric=HP_METRIC,
mode=MODE,
resources_per_trial={"gpu": 4, "cpu": 4},
config=search_space, local_dir='logs/',
num_samples=num_samples, time_budget_s=time_budget_s,
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
scheduler=scheduler, search_alg=algo)
ray.shutdown()
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
metric = best_trial.metric_analysis[HP_METRIC][MODE]
logger.info(f"method={method}")
logger.info(f"n_trials={len(analysis.trials)}")
logger.info(f"time={time.time()-start_time}")
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
logger.info(f"Best model parameters: {best_trial.config}")
def _test_deberta_cfo():
_test_deberta('CFO')
def _test_deberta_dragonfly():
_test_deberta('Dragonfly')
def _test_deberta_skopt():
_test_deberta('SkOpt')
def _test_deberta_nevergrad():
_test_deberta('Nevergrad')
def _test_deberta_zoopt():
_test_deberta('ZOOpt')
def _test_deberta_ax():
_test_deberta('Ax')
def __test_deberta_hyperopt():
_test_deberta('HyperOpt')
def _test_deberta_optuna():
_test_deberta('Optuna')
def _test_deberta_asha():
_test_deberta('ASHA')
def _test_deberta_bohb():
_test_deberta('BOHB')
if __name__ == "__main__":
_test_deberta()

219
test/hf/test_distillbert.py Normal file
View File

@@ -0,0 +1,219 @@
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
'''
import time
import numpy as np
try:
import ray
from datasets import (
load_dataset,
load_metric,
)
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments,
)
MODEL_CHECKPOINT = "distilbert-base-uncased"
TASK = "cola"
NUM_LABELS = 2
COLUMN_NAME = "sentence"
METRIC_NAME = "matthews_correlation"
# HP_METRIC, MODE = "loss", "min"
HP_METRIC, MODE = "matthews_correlation", "max"
# Define tokenize method
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
def tokenize(examples):
return tokenizer(examples[COLUMN_NAME], truncation=True)
except:
print("pip install torch transformers datasets flaml[blendsearch,ray]")
import logging
logger = logging.getLogger(__name__)
import os
os.makedirs('logs', exist_ok=True)
logger.addHandler(logging.FileHandler('logs/tune_distilbert.log'))
logger.setLevel(logging.INFO)
import flaml
def train_distilbert(config: dict):
metric = load_metric("glue", TASK)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
# Load CoLA dataset and apply tokenizer
cola_raw = load_dataset("glue", TASK)
cola_encoded = cola_raw.map(tokenize, batched=True)
train_dataset, eval_dataset = cola_encoded["train"], cola_encoded["validation"]
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_CHECKPOINT, num_labels=NUM_LABELS
)
training_args = TrainingArguments(
output_dir='.',
do_eval=False,
disable_tqdm=True,
logging_steps=20000,
save_total_limit=0,
**config,
)
trainer = Trainer(
model,
training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# train model
trainer.train()
# evaluate model
eval_output = trainer.evaluate()
flaml.tune.report(
loss=eval_output["eval_loss"],
matthews_correlation=eval_output["eval_matthews_correlation"],
)
def _test_distillbert(method='BlendSearch'):
max_num_epoch = 64
num_samples = -1
time_budget_s = 3600
search_space = {
# You can mix constants with search space objects.
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
"learning_rate": flaml.tune.loguniform(1e-6, 1e-4),
"adam_beta1": flaml.tune.uniform(0.8, 0.99),
"adam_beta2": flaml.tune.loguniform(98e-2, 9999e-4),
"adam_epsilon": flaml.tune.loguniform(1e-9, 1e-7),
}
start_time = time.time()
ray.init(num_cpus=4, num_gpus=4)
if 'ASHA' == method:
algo = None
elif 'BOHB' == method:
from ray.tune.schedulers import HyperBandForBOHB
from ray.tune.suggest.bohb import tuneBOHB
algo = tuneBOHB(max_concurrent=4)
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
elif 'Optuna' == method:
from ray.tune.suggest.optuna import OptunaSearch
algo = OptunaSearch()
elif 'CFO' == method:
from flaml import CFO
algo = CFO(points_to_evaluate=[{
"num_train_epochs": 1,
}])
elif 'BlendSearch' == method:
from flaml import BlendSearch
algo = BlendSearch(points_to_evaluate=[{
"num_train_epochs": 1,
}])
elif 'Dragonfly' == method:
from ray.tune.suggest.dragonfly import DragonflySearch
algo = DragonflySearch()
elif 'SkOpt' == method:
from ray.tune.suggest.skopt import SkOptSearch
algo = SkOptSearch()
elif 'Nevergrad' == method:
from ray.tune.suggest.nevergrad import NevergradSearch
import nevergrad as ng
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
elif 'ZOOpt' == method:
from ray.tune.suggest.zoopt import ZOOptSearch
algo = ZOOptSearch(budget=num_samples)
elif 'Ax' == method:
from ray.tune.suggest.ax import AxSearch
algo = AxSearch(max_concurrent=3)
elif 'HyperOpt' == method:
from ray.tune.suggest.hyperopt import HyperOptSearch
algo = HyperOptSearch()
scheduler = None
if method != 'BOHB':
from ray.tune.schedulers import ASHAScheduler
scheduler = ASHAScheduler(
max_t=max_num_epoch,
grace_period=1)
scheduler = None
analysis = ray.tune.run(
train_distilbert,
metric=HP_METRIC,
mode=MODE,
resources_per_trial={"gpu": 4, "cpu": 4},
config=search_space, local_dir='logs/',
num_samples=num_samples, time_budget_s=time_budget_s,
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
scheduler=scheduler, search_alg=algo)
ray.shutdown()
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
metric = best_trial.metric_analysis[HP_METRIC][MODE]
logger.info(f"method={method}")
logger.info(f"n_trials={len(analysis.trials)}")
logger.info(f"time={time.time()-start_time}")
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
logger.info(f"Best model parameters: {best_trial.config}")
def _test_distillbert_cfo():
_test_distillbert('CFO')
def _test_distillbert_dragonfly():
_test_distillbert('Dragonfly')
def _test_distillbert_skopt():
_test_distillbert('SkOpt')
def _test_distillbert_nevergrad():
_test_distillbert('Nevergrad')
def _test_distillbert_zoopt():
_test_distillbert('ZOOpt')
def _test_distillbert_ax():
_test_distillbert('Ax')
def __test_distillbert_hyperopt():
_test_distillbert('HyperOpt')
def _test_distillbert_optuna():
_test_distillbert('Optuna')
def _test_distillbert_asha():
_test_distillbert('ASHA')
def _test_distillbert_bohb():
_test_distillbert('BOHB')
if __name__ == "__main__":
_test_distillbert()

250
test/hf/test_electra.py Normal file
View File

@@ -0,0 +1,250 @@
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
'''
import time
import numpy as np
try:
import ray
from datasets import (
load_dataset,
load_metric,
)
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments,
)
MODEL_CHECKPOINT = "google/electra-base-discriminator"
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
max_seq_length=128
overwrite_cache=False
pad_to_max_length=True
padding = "max_length"
TASK = "qnli"
# HP_METRIC, MODE = "loss", "min"
HP_METRIC, MODE = "accuracy", "max"
sentence1_key, sentence2_key = task_to_keys[TASK]
# Define tokenize method
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
def tokenize(examples):
args = (
(examples[sentence1_key],) if sentence2_key is None else (
examples[sentence1_key], examples[sentence2_key])
)
return tokenizer(*args, padding=padding, max_length=max_seq_length,
truncation=True)
except:
print("pip install torch transformers datasets flaml[blendsearch,ray]")
import logging
logger = logging.getLogger(__name__)
import os
os.makedirs('logs', exist_ok=True)
logger.addHandler(logging.FileHandler('logs/tune_electra.log'))
logger.setLevel(logging.INFO)
import flaml
def train_electra(config: dict):
# Load dataset and apply tokenizer
data_raw = load_dataset("glue", TASK)
data_encoded = data_raw.map(tokenize, batched=True)
train_dataset, eval_dataset = data_encoded["train"], data_encoded["validation"]
NUM_LABELS = len(train_dataset.features["label"].names)
metric = load_metric("glue", TASK)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_CHECKPOINT, num_labels=NUM_LABELS
)
training_args = TrainingArguments(
output_dir='.',
do_eval=False,
disable_tqdm=True,
logging_steps=20000,
save_total_limit=0,
fp16=True,
**config,
)
trainer = Trainer(
model,
training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# train model
trainer.train()
# evaluate model
eval_output = trainer.evaluate()
flaml.tune.report(
loss=eval_output["eval_loss"],
accuracy=eval_output["eval_accuracy"],
)
try:
from azureml.core import Run
run = Run.get_context()
run.log('accuracy', eval_output["eval_accuracy"])
run.log('loss', eval_output["eval_loss"])
run.log('config', config)
except: pass
def _test_electra(method='BlendSearch'):
max_num_epoch = 9
num_samples = -1
time_budget_s = 3600
search_space = {
# You can mix constants with search space objects.
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
"learning_rate": flaml.tune.loguniform(3e-5, 1.5e-4),
"weight_decay": flaml.tune.uniform(0, 0.3),
"per_device_train_batch_size": flaml.tune.choice([16, 32, 64, 128]),
"seed": flaml.tune.choice([12, 22, 33, 42]),
}
start_time = time.time()
ray.init(num_cpus=4, num_gpus=4)
if 'ASHA' == method:
algo = None
elif 'BOHB' == method:
from ray.tune.schedulers import HyperBandForBOHB
from ray.tune.suggest.bohb import tuneBOHB
algo = tuneBOHB(max_concurrent=4)
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
elif 'Optuna' == method:
from ray.tune.suggest.optuna import OptunaSearch
algo = OptunaSearch()
elif 'CFO' == method:
from flaml import CFO
algo = CFO(points_to_evaluate=[{
"num_train_epochs": 1,
"per_device_train_batch_size": 128,
}])
elif 'BlendSearch' == method:
from flaml import BlendSearch
algo = BlendSearch(points_to_evaluate=[{
"num_train_epochs": 1,
"per_device_train_batch_size": 128,
}])
elif 'Dragonfly' == method:
from ray.tune.suggest.dragonfly import DragonflySearch
algo = DragonflySearch()
elif 'SkOpt' == method:
from ray.tune.suggest.skopt import SkOptSearch
algo = SkOptSearch()
elif 'Nevergrad' == method:
from ray.tune.suggest.nevergrad import NevergradSearch
import nevergrad as ng
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
elif 'ZOOpt' == method:
from ray.tune.suggest.zoopt import ZOOptSearch
algo = ZOOptSearch(budget=num_samples)
elif 'Ax' == method:
from ray.tune.suggest.ax import AxSearch
algo = AxSearch(max_concurrent=3)
elif 'HyperOpt' == method:
from ray.tune.suggest.hyperopt import HyperOptSearch
algo = HyperOptSearch()
scheduler = None
if method != 'BOHB':
from ray.tune.schedulers import ASHAScheduler
scheduler = ASHAScheduler(
max_t=max_num_epoch,
grace_period=1)
scheduler = None
analysis = ray.tune.run(
train_electra,
metric=HP_METRIC,
mode=MODE,
resources_per_trial={"gpu": 4, "cpu": 4},
config=search_space, local_dir='logs/',
num_samples=num_samples, time_budget_s=time_budget_s,
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
scheduler=scheduler, search_alg=algo)
ray.shutdown()
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
metric = best_trial.metric_analysis[HP_METRIC][MODE]
logger.info(f"method={method}")
logger.info(f"n_trials={len(analysis.trials)}")
logger.info(f"time={time.time()-start_time}")
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
logger.info(f"Best model parameters: {best_trial.config}")
def _test_electra_cfo():
_test_electra('CFO')
def _test_electra_dragonfly():
_test_electra('Dragonfly')
def _test_electra_skopt():
_test_electra('SkOpt')
def _test_electra_nevergrad():
_test_electra('Nevergrad')
def _test_electra_zoopt():
_test_electra('ZOOpt')
def _test_electra_ax():
_test_electra('Ax')
def __test_electra_hyperopt():
_test_electra('HyperOpt')
def _test_electra_optuna():
_test_electra('Optuna')
def _test_electra_asha():
_test_electra('ASHA')
def _test_electra_bohb():
_test_electra('BOHB')
if __name__ == "__main__":
_test_electra()

251
test/hf/test_roberta.py Normal file
View File

@@ -0,0 +1,251 @@
'''Require: pip install torch transformers datasets flaml[blendsearch,ray]
'''
import time
import numpy as np
try:
import ray
from datasets import (
load_dataset,
load_metric,
)
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments,
)
MODEL_CHECKPOINT = "roberta-base"
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
max_seq_length=128
overwrite_cache=False
pad_to_max_length=True
padding = "max_length"
TASK = "qnli"
# HP_METRIC, MODE = "loss", "min"
HP_METRIC, MODE = "accuracy", "max"
sentence1_key, sentence2_key = task_to_keys[TASK]
# Define tokenize method
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)
def tokenize(examples):
args = (
(examples[sentence1_key],) if sentence2_key is None else (
examples[sentence1_key], examples[sentence2_key])
)
return tokenizer(*args, padding=padding, max_length=max_seq_length,
truncation=True)
except:
print("pip install torch transformers datasets flaml[blendsearch,ray]")
import logging
logger = logging.getLogger(__name__)
import os
os.makedirs('logs', exist_ok=True)
logger.addHandler(logging.FileHandler('logs/tune_roberta.log'))
logger.setLevel(logging.INFO)
import flaml
def train_roberta(config: dict):
# Load dataset and apply tokenizer
data_raw = load_dataset("glue", TASK)
data_encoded = data_raw.map(tokenize, batched=True)
train_dataset, eval_dataset = data_encoded["train"], data_encoded["validation"]
NUM_LABELS = len(train_dataset.features["label"].names)
metric = load_metric("glue", TASK)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_CHECKPOINT, num_labels=NUM_LABELS
)
training_args = TrainingArguments(
output_dir='.',
do_eval=False,
disable_tqdm=True,
logging_steps=20000,
save_total_limit=0,
fp16=True,
**config,
)
trainer = Trainer(
model,
training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# train model
trainer.train()
# evaluate model
eval_output = trainer.evaluate()
flaml.tune.report(
loss=eval_output["eval_loss"],
accuracy=eval_output["eval_accuracy"],
)
try:
from azureml.core import Run
run = Run.get_context()
run.log('accuracy', eval_output["eval_accuracy"])
run.log('loss', eval_output["eval_loss"])
run.log('config', config)
except: pass
def _test_roberta(method='BlendSearch'):
max_num_epoch = 100
num_samples = -1
time_budget_s = 3600
search_space = {
# You can mix constants with search space objects.
"num_train_epochs": flaml.tune.loguniform(1, max_num_epoch),
"learning_rate": flaml.tune.loguniform(1e-5, 3e-5),
"weight_decay": flaml.tune.uniform(0, 0.3),
"per_device_train_batch_size": flaml.tune.choice([16, 32, 64, 128]),
"seed": flaml.tune.choice([12, 22, 33, 42]),
}
start_time = time.time()
ray.init(num_cpus=4, num_gpus=4)
if 'ASHA' == method:
algo = None
elif 'BOHB' == method:
from ray.tune.schedulers import HyperBandForBOHB
from ray.tune.suggest.bohb import tuneBOHB
algo = tuneBOHB(max_concurrent=4)
scheduler = HyperBandForBOHB(max_t=max_num_epoch)
elif 'Optuna' == method:
from ray.tune.suggest.optuna import OptunaSearch
algo = OptunaSearch()
elif 'CFO' == method:
from flaml import CFO
algo = CFO(points_to_evaluate=[{
"num_train_epochs": 1,
"per_device_train_batch_size": 128,
}])
elif 'BlendSearch' == method:
from flaml import BlendSearch
algo = BlendSearch(points_to_evaluate=[{
"num_train_epochs": 1,
"per_device_train_batch_size": 128,
}])
elif 'Dragonfly' == method:
from ray.tune.suggest.dragonfly import DragonflySearch
algo = DragonflySearch()
elif 'SkOpt' == method:
from ray.tune.suggest.skopt import SkOptSearch
algo = SkOptSearch()
elif 'Nevergrad' == method:
from ray.tune.suggest.nevergrad import NevergradSearch
import nevergrad as ng
algo = NevergradSearch(optimizer=ng.optimizers.OnePlusOne)
elif 'ZOOpt' == method:
from ray.tune.suggest.zoopt import ZOOptSearch
algo = ZOOptSearch(budget=num_samples)
elif 'Ax' == method:
from ray.tune.suggest.ax import AxSearch
algo = AxSearch(max_concurrent=3)
elif 'HyperOpt' == method:
from ray.tune.suggest.hyperopt import HyperOptSearch
algo = HyperOptSearch()
scheduler = None
if method != 'BOHB':
from ray.tune.schedulers import ASHAScheduler
scheduler = ASHAScheduler(
max_t=max_num_epoch,
grace_period=1)
scheduler = None
analysis = ray.tune.run(
train_roberta,
metric=HP_METRIC,
mode=MODE,
resources_per_trial={"gpu": 4, "cpu": 4},
config=search_space, local_dir='logs/',
num_samples=num_samples, time_budget_s=time_budget_s,
keep_checkpoints_num=1, checkpoint_score_attr=HP_METRIC,
scheduler=scheduler, search_alg=algo)
ray.shutdown()
best_trial = analysis.get_best_trial(HP_METRIC, MODE, "all")
metric = best_trial.metric_analysis[HP_METRIC][MODE]
logger.info(f"method={method}")
logger.info(f"n_trials={len(analysis.trials)}")
logger.info(f"time={time.time()-start_time}")
logger.info(f"Best model eval {HP_METRIC}: {metric:.4f}")
logger.info(f"Best model parameters: {best_trial.config}")
def _test_roberta_cfo():
_test_roberta('CFO')
def _test_roberta_dragonfly():
_test_roberta('Dragonfly')
def _test_roberta_skopt():
_test_roberta('SkOpt')
def _test_roberta_nevergrad():
_test_roberta('Nevergrad')
def _test_roberta_zoopt():
_test_roberta('ZOOpt')
def _test_roberta_ax():
_test_roberta('Ax')
def __test_roberta_hyperopt():
_test_roberta('HyperOpt')
def _test_roberta_optuna():
_test_roberta('Optuna')
def _test_roberta_asha():
_test_roberta('ASHA')
def _test_roberta_bohb():
_test_roberta('BOHB')
if __name__ == "__main__":
_test_roberta()

19
test/nni/config.yml Normal file
View File

@@ -0,0 +1,19 @@
# usage: nnictl create --config ./config.yml
authorName: default
experimentName: example_mnist
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
trainingServicePlatform: local
# The path to Search Space
searchSpacePath: search_space.json
useAnnotation: false
tuner:
codeDir: ./
classFileName: flaml_nni_wrap.py
className: BlendSearchTuner
# The path and the running command of trial
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0

View File

@@ -0,0 +1,7 @@
from flaml.searcher.blendsearch import BlendSearchTuner as BST
class BlendSearchTuner(BST):
# for best performance pass low cost initial parameters here
def __init__(self, points_to_evaluate=[{"hidden_size":128}]):
super.__init__(self, points_to_evaluate=points_to_evaluate)

169
test/nni/mnist.py Normal file
View File

@@ -0,0 +1,169 @@
# This file is copied from NNI project
# https://github.com/microsoft/nni/blob/master/examples/trials/mnist-tfv1/mnist.py
"""
A deep MNIST classifier using convolutional layers.
This file is a modification of the official pytorch mnist example:
https://github.com/pytorch/examples/blob/master/mnist/main.py
"""
import os
import argparse
import logging
import nni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from nni.utils import merge_parameter
from torchvision import datasets, transforms
logger = logging.getLogger('mnist_AutoML')
class Net(nn.Module):
def __init__(self, hidden_size):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, hidden_size)
self.fc2 = nn.Linear(hidden_size, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:
break
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args['log_interval'] == 0:
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction='sum').item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
return accuracy
def main(args):
use_cuda = not args['no_cuda'] and torch.cuda.is_available()
torch.manual_seed(args['seed'])
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
data_dir = args['data_dir']
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(data_dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args['batch_size'], shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=1000, shuffle=True, **kwargs)
hidden_size = args['hidden_size']
model = Net(hidden_size=hidden_size).to(device)
optimizer = optim.SGD(model.parameters(), lr=args['lr'],
momentum=args['momentum'])
for epoch in range(1, args['epochs'] + 1):
train(args, model, device, train_loader, optimizer, epoch)
test_acc = test(args, model, device, test_loader)
# report intermediate result
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
# report final result
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
def get_params():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument("--data_dir", type=str,
default='./data', help="data directory")
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument("--batch_num", type=int, default=None)
parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
help='hidden layer size (default: 512)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
help='how many batches to wait before logging training status')
args, _ = parser.parse_known_args()
return args
if __name__ == '__main__':
try:
# get parameters form tuner
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(merge_parameter(get_params(), tuner_params))
print(params)
main(params)
except Exception as exception:
logger.exception(exception)
raise

View File

@@ -0,0 +1,6 @@
{
"batch_size": {"_type":"choice", "_value": [16, 32, 64, 128]},
"hidden_size":{"_type":"choice","_value":[128, 256, 512, 1024]},
"lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},
"momentum":{"_type":"uniform","_value":[0, 1]}
}

19
test/run_electra.py Normal file
View File

@@ -0,0 +1,19 @@
from azureml.core import Workspace, Experiment, ScriptRunConfig
ws = Workspace.from_config()
compute_target = ws.compute_targets['V100-4']
# compute_target = ws.compute_targets['K80']
command = [
"pip install torch transformers datasets flaml[blendsearch,ray] ax-platform sqlalchemy && ",
"python test_electra.py"]
config = ScriptRunConfig(
source_directory='hf/',
command=command,
compute_target=compute_target,
)
exp = Experiment(ws, 'test-electra')
run = exp.submit(config)
print(run.get_portal_url()) # link to ml.azure.com
run.wait_for_completion(show_output=True)

View File

@@ -98,6 +98,8 @@ class TestAutoML(unittest.TestCase):
'''The main flaml automl API'''
automl.fit(X_train = X_train, y_train = y_train, **settings)
# print the best model found for RGF
print(automl.best_model_for_estimator("RGF"))
def test_ensemble(self):
automl = AutoML()
@@ -170,6 +172,10 @@ class TestAutoML(unittest.TestCase):
"model_history": True
}
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
if as_frame:
# test drop column
X_train.columns = range(X_train.shape[1])
X_train[X_train.shape[1]] = np.zeros(len(y_train))
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.classes_)
@@ -250,7 +256,8 @@ class TestAutoML(unittest.TestCase):
"task": 'regression',
"log_file_name": "test/sparse_regression.log",
"n_jobs": 1,
"model_history": True
"model_history": True,
"verbose": 0,
}
X_train = scipy.sparse.random(300, 900, density=0.0001)
y_train = np.random.uniform(size=300)
@@ -274,7 +281,7 @@ class TestAutoML(unittest.TestCase):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
"time_budget": 3,
"metric": 'ap',
"task": 'classification',
"log_file_name": "test/sparse_classification.log",
@@ -325,10 +332,11 @@ class TestAutoML(unittest.TestCase):
"task": 'regression',
"log_file_name": "test/sparse_regression.log",
"n_jobs": 1,
"model_history": True
"model_history": True,
"metric": "mse"
}
X_train = scipy.sparse.random(100, 100)
y_train = np.random.uniform(size=100)
X_train = scipy.sparse.random(8, 100)
y_train = np.random.uniform(size=8)
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.predict(X_train))

View File

@@ -26,7 +26,7 @@ class TestLogging(unittest.TestCase):
logger.addHandler(ch)
# Run a simple job.
automl_experiment = AutoML()
automl = AutoML()
automl_settings = {
"time_budget": 1,
"metric": 'mse',
@@ -34,13 +34,18 @@ class TestLogging(unittest.TestCase):
"log_file_name": training_log,
"log_training_metric": True,
"n_jobs": 1,
"model_history": True
"model_history": True,
}
X_train, y_train = load_boston(return_X_y=True)
n = len(y_train) >> 1
automl_experiment.fit(X_train=X_train[:n], y_train=y_train[:n],
automl.fit(X_train=X_train[:n], y_train=y_train[:n],
X_val=X_train[n:], y_val=y_train[n:],
**automl_settings)
# Check if the log buffer is populated.
self.assertTrue(len(buf.getvalue()) > 0)
import pickle
with open('automl.pkl', 'wb') as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
print(automl.__version__)

View File

@@ -1,3 +1,5 @@
'''Require: pip install torchvision ray flaml[blendsearch]
'''
import unittest
import os
import time
@@ -24,7 +26,6 @@ def load_data(data_dir="./data"):
# __load_data_end__
import numpy as np
try:
import torch
import torch.nn as nn

View File

@@ -25,7 +25,8 @@ class TestTrainingLog(unittest.TestCase):
"log_training_metric": True,
"mem_thres": 1024*1024,
"n_jobs": 1,
"model_history": True
"model_history": True,
"verbose": 2,
}
X_train, y_train = load_boston(return_X_y=True)
automl_experiment.fit(X_train=X_train, y_train=y_train,

View File

@@ -1,5 +1,6 @@
'''Require: pip install flaml[test,ray]
'''
import unittest
import os
import time
from sklearn.model_selection import train_test_split
import sklearn.metrics
@@ -48,7 +49,6 @@ def _test_xgboost(method='BlendSearch'):
else:
from ray import tune
search_space = {
# You can mix constants with search space objects.
"max_depth": tune.randint(1, 8) if method in [
"BlendSearch", "BOHB", "Optuna"] else tune.randint(1, 9),
"min_child_weight": tune.choice([1, 2, 3]),
@@ -56,7 +56,7 @@ def _test_xgboost(method='BlendSearch'):
"eta": tune.loguniform(1e-4, 1e-1)
}
max_iter = 10
for num_samples in [256]:
for num_samples in [128]:
time_budget_s = 60 #None
for n_cpu in [8]:
start_time = time.time()
@@ -138,6 +138,7 @@ def _test_xgboost(method='BlendSearch'):
scheduler=scheduler, search_alg=algo)
ray.shutdown()
# # Load the best model checkpoint
# import os
# best_bst = xgb.Booster()
# best_bst.load_model(os.path.join(analysis.best_checkpoint,
# "model.xgb"))
@@ -152,6 +153,33 @@ def _test_xgboost(method='BlendSearch'):
logger.info(f"Best model parameters: {best_trial.config}")
def test_nested():
from flaml import tune
search_space = {
# test nested search space
"cost_related": {
"a": tune.randint(1, 8),
},
"b": tune.uniform(0.5, 1.0),
}
def simple_func(config):
tune.report(
metric=(config["cost_related"]["a"]-4)**2 * (config["b"]-0.7)**2)
analysis = tune.run(
simple_func,
init_config={
"cost_related": {"a": 1,}
},
metric="metric",
mode="min",
config=search_space,
local_dir='logs/',
num_samples=-1,
time_budget_s=1)
def test_xgboost_bs():
_test_xgboost()

View File

@@ -8,11 +8,7 @@ from flaml.model import XGBoostSklearnEstimator
from flaml import tune
# dataset = "blood-transfusion-service-center"
# dataset = "Australian"
dataset = "credit-g"
# dataset = "phoneme"
# dataset = "kc1"
class XGBoost2D(XGBoostSklearnEstimator):
@@ -50,8 +46,11 @@ def test_simple(method=None):
"log_type": "all",
"time_budget": 3#6000,
}
X, y = fetch_openml(name=dataset, return_X_y=True)
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except:
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
random_state=42)
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)